
Chapter 8
Cryptography

Contents

8.1 Symmetric Cryptography 388
8.1.1 Attacks . 389
8.1.2 Substitution Ciphers 391
8.1.3 One-Time Pads . 393
8.1.4 Pseudo-Random Number Generators 395
8.1.5 The Hill Cipher and Transposition Ciphers 397
8.1.6 The Advanced Encryption Standard (AES) 399
8.1.7 Modes of Operation 402

8.2 Public-Key Cryptography 406
8.2.1 Modular Arithmetic 406
8.2.2 The RSA Cryptosystem 410
8.2.3 The Elgamal Cryptosystem 413
8.2.4 Key Exchange . 415

8.3 Cryptographic Hash Functions 417
8.3.1 Properties and Applications 417
8.3.2 Birthday Attacks 419

8.4 Digital Signatures . 421
8.4.1 The RSA Signature Scheme 422
8.4.2 The Elgamal Signature Scheme 423
8.4.3 Using Hash Functions with Digital Signatures . . . 424

8.5 Details of AES and RSA Cryptography 425
8.5.1 Details for AES . 425
8.5.2 Details for RSA . 431

8.6 Exercises . 439

387

388 Chapter 8. Cryptography

8.1 Symmetric Cryptography

Cryptography began primarily as a way for two parties, who are typically
called “Alice” and “Bob,” to communicate securely even if their messages
might be read by an eavesdropper, “Eve.” (See Figure 8.1.) It has grown
in recent times to encompass much more than this basic scenario. Exam-
ples of current applications of cryptography include attesting the identity
of the organization operating a web server, digitally signing electronic
documents, protecting the confidentiality of online baking and shopping
transactions, protecting the confidentiality of the files stored on a hard
drive, and protecting the confidentiality of packets sent over a wireless
network. Thus, cryptography deals with many techniques for secure and
trustworthy communication and computation.

Alice Bob

Eve

Figure 8.1: The basic scenario for cryptograpy. Alice and Bob encrypt
their communications so that the eavesdropper Eve, can’t understand the
content of their messages.

In symmetric cryptography, which was introduced in Section 1.3.1 and
is discussed in more detail in this section, we use the same key for both
encryption and decryption. The symmetric encryption algorithm recom-
mended by the U.S. National Institute of Standards and Technology (NIST)
is the Advanced Encryption Standard, or AES, which is designed to be
a replacement for the legacy Data Encryption Standard (DES) algorithm.
Rather than jumping right in to describe the AES cryptosystem, however,
let us first describe some classic cryptosystems. Each classic cryptosystem
we describe contains an idea that is included in AES; hence, understanding
each of these earlier cryptosystems helps us understand AES.

8.1. Symmetric Cryptography 389

8.1.1 Attacks

Before we describe any cryptosystem in detail, however, let us say a few
words about cryptosystem attacks. The science of attacking cryptosystems
is known as cryptanalysis and its practitioners are called cryptanalysts. In
performing cryptanalysis, we assume that the cryptanalyst knows the algo-
rithms for encryption and decryption, but that he does not know anything
about the keys used. This assumption follows the open design principle
(Section 1.1.4). In fact, it is dangerous for us to assume that we gain any
degree of security from the fact that the cryptanalyst doesn’t know which
algorithms we are using. Such security by obscurity approach is likely to
fail, since there are a number of different ways that such information can be
leaked. For example, internal company documents could be published or
stolen, a programmer who coded an encryption algorithm could be bribed
or could voluntarily disclose the algorithm, or the software or hardware
that implements an encryption algorithm could be reverse engineered. So
we assume the cryptanalyst knows which cryptosystem we are using.

There are four primary types of attacks that a cryptanalyst can attempt
to perform on a given cryptosystem.

• Ciphertext-only attack. In this attack, the cryptanalyst has access to
the ciphertext of one or more messages, all of which were encrypted
using the same key, K. His or her goal is to determine the plaintext
for one or more of these ciphertexts or, better yet, to discover K.

• Known-plaintext attack. Inthis attack, the cryptanalyst has access to
one or more plaintext-ciphertext pairs, such that each plaintext was
encrypted using the same key, K. His or her goal in this case is to
determine the key, K.

• Chosen-plaintext attack. In this attack, the cryptanalyst can chose
one or more plaintext messages and get the ciphertext that is associ-
ated with each one, based on the use of same key, K. In the offline
chosen-plaintext attack, the cryptanalyst must choose all the plain-
texts in advance, whereas in the adaptive chosen-plaintext attack, the
cryptanalyst can choose plaintexts in an iterative fashion, where each
plaintext choice can be based on information he gained from previous
plaintext encryptions.

• Chosen-ciphertext attack. In this attack, the cryptanalyst can choose
one or more ciphertext messages and get the plaintext that is asso-
ciated with each one, based on the use of same key, K. As with the
chosen-plaintext attack, this attack also has both offline and adaptive
versions.

390 Chapter 8. Cryptography

We have listed the attacks above in order by the amount of information
the cryptanalyst can access when performing them. (See Figure 8.2.)

Hi, Bob.
Don’t invite
Eve to the
party!
Love Alice

Encryption
Algorithm

Plaintext Ciphertext

(a)
Love, Alice

key

Eve

Hi, Bob.
Don’t invite
Eve to the
party!
Love Alice

Plaintext Ciphertext

key

(b)

Encryption
Algorithm

Love, Alice key

Eve

ABCDEFG
HIJKLMNO
PQRSTUV
WXYZ.

Plaintext Ciphertext

(c)

Eve
Encryption
Algorithm

key

Eve

IJCGA,
CAN DO
HIFFA
GOT TIME.

Plaintext Ciphertext

key

001101
110111(d)

Eve
Decryption
Algorithm

key

Eve
Eve

Figure 8.2: Types of attacks: (a) Ciphertext-only attack. (b) Known-plaintext
attack. (c) Chosen-plaintext attack. (d) Chosen-ciphertext attack.

One thing that makes these attacks feasible is that it is usually easy to
recognize that a message is a valid plaintext. For example, given a certain
ciphertext, a cryptanalyst could decrypt it with a given key and get mes-
sage NGGNPXNGQNJABAVEIVARORNPU, which she can immediately
dismiss. But if she gets message ATTACKATDAWNONIRVINEBEACH, then
she can be confident she has found the decryption key. This ability is related
to the unicity distance for a cryptosystem, which is the minimum number
of characters of ciphertext that are needed so that there is a single intelligible
plaintext associated with it. Because of the built-in redundancy that is a part
of every natural language (which helps us understand it when it is spoken),
the unicity distance, in characters, for most cryptosystems is typically much
less than their key lengths, in bits. This concept was previously introduced
in Section 1.3.3 in the context of brute-force decryption attacks.

8.1. Symmetric Cryptography 391

8.1.2 Substitution Ciphers

In the ancient cryptosystem, the Caesar cipher, each Latin letter of a plain-
text was substituted by the letter that was three positions away in a cyclic
listing of the alphabet, that is, modulo the alphabet size (Section 1.1.1). We
can generalize this cipher so that each letter can have an arbitrary substi-
tution, so long as all the substitutions are unique. This approach greatly
increases the key space; hence, increasing the security of the cryptosystem.
For example, with English plaintexts, there are 26! possible substitution
ciphers, that is, there are more than 4.03× 1026 such ciphers.

An entertaining example of a substitution cipher is shown in the 1983
movie A Christmas Story. In this movie, the young character, Ralphie, uses
a circular decoder pin representing a substitution cipher to decode a secret
message broadcast over the radio. He is a bit disappointed, however, when
he discovers that the message is

“BE SURE TO DRINK YOUR OVALTINE,”

which was little more than a commercial.
Simple substitution ciphers like the one Ralphie used, which are based

on substituting letters of the alphabet, are easily broken. The main weak-
ness in such ciphers is that they don’t hide the underlying frequencies of the
different characters of a plaintext. For example, in English text, the letter
“E” occurs just over 12% of the time, and the next frequent letter is “T.”
which occurs less than 10% of the time. So the most frequently occurring
character in a ciphertext created from English text with a substitution cipher
probably corresponds to the letter “E.” In Table 8.1, we give the frequencies
of letters that occur in a well-known book, which illustrates the potential
weakness of a letter-based substitution cipher to a frequency analysis. A
similar table could have easily been constructed for any text or corpus
written in any alphabet-based language.

a: 8.05% b: 1.67% c: 2.23% d: 5.10%
e: 12.22% f: 2.14% g: 2.30% h: 6.62%
i: 6.28% j: 0.19% k: 0.95% l: 4.08%
m: 2.33% n: 6.95% o: 7.63% p: 1.66%
q: 0.06% r: 5.29% s: 6.02% t: 9.67%
u: 2.92% v: 0.82% w: 2.60% x: 0.11%
y: 2.04% z: 0.06%

Table 8.1: Letter frequencies in the book The Adventures of Tom Sawyer, by
Mark Twain.

392 Chapter 8. Cryptography

Polygraphic Substitution Ciphers and Substitution Boxes

In a polygraphic substitution cipher, groups of letters are encrypted to-
gether. For example, a plaintext could be partitioned into strings of two
letters each, that is, divided into digrams, and each digram substituted with
a different and unique other digram to create the ciphertext. Since there are
262 = 676 possible English digrams, there are 676! possible keys for such
an English digram substitution. The problem with such keys, however, is
that they are long—specifying an arbitrary digram substitution key requires
that we write down the substitutions for all 676 digrams. Of course, if an
alphabet size is smaller than 26, we can write down a digram substitution
cipher more compactly. For example, the Hawaiian language uses just 12
letters if we ignore accent marks. Still, even in this case, it would be useful
to have a compact way to express digram substitutions.

One way to express a digram substitution that is easy to visualize is to
use a two-dimensional table. In such a table, the first letter in a pair would
specify a row, the second letter in a pair would specify a column, and each
entry would be the unique two-letter substitution to use for this pair. Such
a specification is called a substitution box or S-box.

This visualization approach, of using an S-box to encode a substitution
cipher, can be extended to binary words. For example, we could take a b-bit
word, x, divide it into two words, y and z, consisting of the first c bits and
last d bits, respectively, of x, such that b = c + d. Then we could specify
the substitution to use for such a word, x, by using an S-box of dimensions
2c × 2d. We show an example 4× 4 S-box for a 4-bit substitution cipher in
Figure 8.3. Note that as long as the substitutions specified in an S-box, S ,
are unique, then there is an inverse S-box, S−1, that can be used to reverse
the substitutions specified by S .

In addition to single-letter frequencies, the frequencies of all digram
combinations are easy to compute for any alphabet-based written language,
given a large enough corpus. Thus, a cryptosystem based only on simple
single-character or digram substitution is insecure.

00 01 10 11
00 0011 0100 1111 0001
01 1010 0110 0101 1011
10 1110 1101 0100 0010
11 0111 0000 1001 1100

0 1 2 3
0 3 8 15 1
1 10 6 5 11
2 14 13 4 2
3 7 0 9 12

(a) (b)

Figure 8.3: A 4-bit S-box (a) An S-box in binary. (b) The same S-box in
decimal. This particular S-box is used in the Serpent cryptosystem, which
was a finalist to become AES, but was not chosen.

8.1. Symmetric Cryptography 393

8.1.3 One-Time Pads

Substitution can be applied to entire blocks of letters at a time, not just pairs.
For example, the Vigenère cipher, first published in 1586, is an example of
a polygraphic substitution cipher that applies to blocks of length m, since
it amounts to repeatedly using m shift ciphers in parallel. A key in this
cryptosystem is a sequence of m shift amounts, (k1, k2, . . . , km), modulo the
alphabet size (26 for English). Given a block of m characters of plaintext,
we encrypt the block by cyclically shifting the first character by k1, the
second by k2, the third by k3, and so on. Thus, there are potentially m
different substitutions for any given letter in the plaintext (depending on
where in the plaintext the letter appears), making this a type of polygraphic
substitution cipher. Decryption is done by performing the reverse shifts
on each block of m characters in the ciphertext. Unfortunately, as with
all substitution ciphers, the Vigenére cipher can be easily broken using
statistical techniques, as long as the ciphertext is long enough relative to
the value of m.

There is one type of substitution cipher that is absolutely unbreakable,
however, which is known as the one-time pad. In the one-time pad, which
was invented in 1917 by Joseph Mauborgne and Gilbert Vernam, we apply
the same approach as with the Vigenère cipher, in that we use a block of
keys, (k1, k2, . . . , km), to encrypt a plaintext, M, of length n, but with two
critical differences.

1. The length, m, of the block of keys has to be the same as n, the length
of the plaintext.

2. Each shift amount, ki, must be chosen completely at random.

With these two additional rules, there is no statistical analysis that can
be applied to a ciphertext. Indeed, since each shift amount is chosen
completely at random, each letter of the alphabet is equally likely to appear
at any place in the ciphertext. Thus, from the eavesdropper’s perspective,
every letter of the alphabet is equally likely to have produced any given
letter in the ciphertext. That is, this cryptosystem is absolutely unbreakable.

Because of its security, it is widely reported that the hotline connecting
Moscow and Washington, D.C., during the Cold War was encrypted using a
one-time pad. So long as no one reveals the pads—the sequence of random
shifts that were used in one-time pad encryptions—the messages that were
sent will be secret forever. But when pads are reused, then the security of
the messages is quickly reduced, since it allows for statistical methods to be
used to discover parts of the plaintext.

394 Chapter 8. Cryptography

But this requirement of one-time use is hard to achieve, since the pad
length has to be as long as the message. If Alice and Bob are encrypting
a long conversation using a one-time pad, what happens when one of
them runs out of pad? Interestingly, such a situation happened during the
Cold War. It is now known that the Soviet Union communicated with its
spies using one-time pads, but that these pads were sometimes reused by
desperate spies who had used up all the pages of pad in their code books.
Anticipating that such reuse would occur, the U.S. government initiated an
effort, called the Venona Project, to perform analyses of intercepted traffic
between the Soviet Union and its spies. The Venona Project was highly
successful, in fact, because a significant amount of pad reuse actually did
occur in the field, since the one-time pad is impractical.

Binary One-Time Pads

In spite of its impracticality, some principles of the one-time pad are used in
other, more-practical cryptosystems. In particular, there is a binary version
of the one-time pad that has an elegant interpretation using the binary
exclusive-or (XOR) operation. This operation is used in most modern
cryptosystems similarly to how it is used in a binary version of the one-time
pad cryptosystem. Recall that the exclusive-or (XOR) operator applied to
two bits, a and b, yields 1 if a and b are different, and 0 if a and b are the
same. In the binary one-time pad, we view the plaintext message, M, as
being a binary string of length n. Likewise, we view the pad, P, to be a
completely random binary string of length n. We can then specify how to
produce the ciphertext, C, using the formula

C = M⊕ P,

where we make the common notational use of ⊕ here to denote the XOR
operator applied bitwise to two equal-length binary strings. Like its letter-
based counterpart, the binary one-time pad is absolutely unbreakable, be-
cause each bit of the ciphertext is equally likely to be a 0 or 1, independent of
the plaintext and the other bits of the ciphertext. In addition, given the pad
P it is easy to recover the plaintext from the ciphertext, using the formula

M = C⊕ P.

Indeed, since XOR is associative, we have

C⊕ P = (M⊕ P)⊕ P = M⊕ (P⊕ P) = M⊕~0 = M.

where ~0 denotes a vector of all zero bits. Thus, in a binary one-time pad
cryptosystem, the pad P is used directly for both encryption and decryp-
tion.

8.1. Symmetric Cryptography 395

8.1.4 Pseudo-Random Number Generators

Randomness is a precious resource, as the historical experience with the
one-time pad shows. Ignoring the philosophical argument about whether
“true” randomness really exists, and sticking to the practical problem of
how to gather unpredictable bits, getting a computer or other digital device
to generate random numbers is relatively expensive. Current techniques
involve sampling subatomic processes whose unpredictability is derived
from quantum mechanics or sampling environmental phenomena, such as
user input variations, wind noise, or background radiation coming from
outer space. None of these techniques are cheap or fast, from a computer’s
perspective. Moreover, even with these sources of unpredictability, it is
not easy to turn any of these sources into uniformly distributed, unbiased
sequences of numbers or bits, such as is needed for the one-time pad.

Randomness is useful, however, for such things as secret keys. So it
is helpful if we can expand any sources of randomness we have, to get
more useful bits from these sources. We can perform such an expansion of
randomness by using a pseudo-random number generator (PRNG), which
is a method for generating a sequence of numbers that approximates the
properties of a random sequence.

The Linear Congruential Generator

A desirable propery of a random sequence is that the numbers it generates
are uniformly distributed. One way to achieve this property is to use a
method employed, for instance, by the java.util.Random class in Java,
which is a linear congruential generator. In this PRNG, we start with a
random number, x0, which is called the seed, and we generate the next
number, xi+1, in a sequence, from the previous number, xi, according to
the following formula:

xi+1 = (axi + b) mod n.

Here, we assume that a > 0 and b ≥ 0 are chosen at random from the
range [0, n − 1], which is also the range of generated numbers. If a and
n are relatively prime, then one can prove that the generated sequence is
uniformly distributed. For instance, if n itself is prime, then this PRNG
will be uniform, which approximates an important property of a random
sequence. For cryptographic purposes, the linear congruential generator
produces a sequence of numbers that is insufficient as a random sequence
however.

396 Chapter 8. Cryptography

Security Properties for PRNG’s

In cryptographic applications, we desire pseudo-random number genera-
tors with additional properties that the linear congruential generator does
not have. For instance, it should be hard to predict xi+1 from previous
numbers in the sequence. With the linear congruential generator, it is easy
to determine the values of a and b as soon as we have seen three consecutive
numbers, and, from that point on, an adversary can predict every number
that follows.

Another desired property for a pseudo-random sequence concerns its
period. Since a pseudo-random sequence is generated deterministically
from a random seed, there will be a point where the sequence starts re-
peating itself. The number of values that are output by the sequence before
it repeats is known as its period. For instance, if a is relatively prime to n,
then the period of a linear congruential generator is n.

A More Secure PRNG

There are several PRNGs that are believed to be cryptographically secure.
For example, a PRNG more secure than the linear congruential generator is
one that takes a secure encryption algorithm, like the Advanced Encryption
Standard (AES) algorithm (which operates on fixed-length plaintext blocks)
and uses it to encrypt, using a common random key, each number in a
deterministic sequence of numbers that starts from a random seed. This
sequence could even be a consecutive set of integers, as long as it starts from
a random seed. Breaking the predictability of such a sequence amounts
to a type of ciphertext-only attack, where the adversary knows that the
associated plaintexts are taken from a known sequence. The period of this
PRNG is equal to 2n, where n is the the block size. Thus, such a PRNG is
much more secure than the linear congruential generator.

Given a secure PRNG, we can use it for encryption and decryption, by
making its seed be a secret key, K, and performing an exclusive-or of the
sequence of pseudo-random numbers with the plaintext message, M, to
produce a ciphertext, as with the one-time pad. Even so, just as with the
one-time pad, we should only perform such an encryption only once for
any given key, K, and the length of the plaintext should be much smaller
than the period for the PRNG. Otherwise, the security of our scheme would
be similar to the weak security that comes from reusing a one-time pad.
For this reason, such an encryption scheme is best restricted for use as a
stream cipher, where we encrypt a single stream of bits or blocks. Stream
ciphers where previously discussed in the context of encryption methods
for wireless networks (Section 6.5.2).

8.1. Symmetric Cryptography 397

8.1.5 The Hill Cipher and Transposition Ciphers

Another classic cryptosystem is the Hill cipher, which was invented in 1929
by Lester S. Hill. The Hill cipher takes an approach based on the use of
linear algebra. In the description below, we assume the reader is familiar
with the basics of matrix multiplication and inverses.

The Hill cipher takes a block of m letters, each interpreted as a number
from 0 to 25, and interprets this block as a vector of length m. Thus, if m = 3
and a block is the string “CAT,” then we would represent this block as the
vector

~x =

 2
0
19

 .

The Hill cipher uses an m×m random matrix, K, as the key, provided that
K is invertible when we perform all arithmetic modulo 26. The ciphertext
vector,~c, for ~x, is determined by the matrix equation

~c = K ·~x,

where we use standard matrix multiplication for the operator (·), assuming
all arithmetic is modulo 26. Given the inverse, K−1, for K, we can recover
the plaintext vector, ~x, from~c, using the formula

~x = K−1 ·~c,

since
K−1 ·~c = K−1 · (K ·~x) = (K−1 · K) ·~x =~1 ·~x = ~x.

This approach allows us to specify an encryption of an entire message, M,
mathematically, by interpreting M as a matrix of dimension m× N, where
N = n/m, and defining the ciphertext, C, as an m× N matrix defined as

C = K ·M.

Then we can recover the entire message, M, from C as follows:

M = K−1 · C,

where, in both the encryption and decryption, we assume that all arithmetic
is done modulo 26.

Although this notation is quite elegant, the Hill cipher is still relatively
easy to break given enough plaintext-ciphertext pairs. Nevertheless, its
use of interpreting letters as numbers and using linear algebra to perform
encryption and decryption is another idea from classic cryptography that
finds its way into the AES cryptosystem.

398 Chapter 8. Cryptography

Transposition Ciphers

In a transposition cipher, the letters in a block of length m in a plaintext
are shuffled around according to a specific permutation of length m. Since
every permutation, π, also has an inverse permutation, π−1, which undoes
all the shuffling that is done by π, it is easy to do encryption and decryption
of messages in this cryptosystem if we know π. In particular, the encryption
of a plaintext M of length m can be done by the formula

C = π(M),

and decryption can be done by the formula

M = π−1(C).

This formula works independent of whether we are viewing the characters
in M as letters or as bits.

Transposition Ciphers as Hill Ciphers

Interestingly, such a transposition cipher is actually a special case of a Hill
cipher, because any permutation can be performed using matrix multipli-
cation. For example, if the matrix

0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 1 0

were used in a Hill cipher, then it would be equivalent to the following
permutation:

π : (1, 2, 3, 4, 5)→ (3, 1, 2, 5, 4).

Note that when we apply a transpositional cipher to the letters in a
plaintext M, we do nothing to hide the statistical distribution of the letters
in M. Such lack of hiding can leak information. Moreover, since a trans-
position cipher is a type of Hill cipher, it is subject to the same weakness
as the Hill cipher. In particular, with enough plaintext-ciphertext pairs, we
can solve a straightforward linear system to determine all the values in the
matrix used for encryption. And once we know the encryption matrix, the
entire encryption scheme is broken. Nevertheless, if we use permutations
and other matrix operations in a nonlinear encryption scheme like the one
we discuss next, then the overall cryptosystem will not have this weakness.

8.1. Symmetric Cryptography 399

8.1.6 The Advanced Encryption Standard (AES)

In 1997, the U.S. National Institute for Standards and Technology (NIST)
put out a public call for a replacement of the symmetric encryption algo-
rithm DES. It narrowed down the list of submissions to five finalists, and
ultimately chose an algorithm that was then known only as Rijndael (which
is pronounced something like “Rhine doll”), designed by cryptographers
Joan Daemen and Vincent Rijmen, as the one to become the new standard,
the Advanced Encryption Standard (AES).

AES is a block cipher that operates on 128-bit blocks. It is designed to be
used with keys that are 128, 192, or 256 bits long, yielding ciphers known as
AES-128, AES-192, and AES-256. A schematic input-output diagram of AES
is shown in Figure 8.4. As of early 2010, AES-256 is widely regarded as the
best choice for a general-purpose symmetric cryptosystem. It is supported
by all mainstream operating systems, including Windows, Mac OS, and
Linux.

Input

128 bits

Output

128 bits
AES

Key

128, 192 or 256 bits

Figure 8.4: Schematic input-output diagram of the AES symmetric block
cipher. The block size is always 128 bits. The key length can be 128, 192, or
256 bits.

AES Rounds

The 128-bit version of the AES encryption algorithm proceeds in ten
rounds. Each round performs an invertible transformation on a 128-bit
array, called state. The initial state X0 is the XOR of the plaintext P with
the key K:

X0 = P⊕ K.

400 Chapter 8. Cryptography

Round i (i = 1, · · · , 10) receives state Xi−1 as input and produces state Xi.
The ciphertext C is the output of the final round: C = X10. A schematic
illustration of the structure of the AES rounds is shown in Figure 8.5.

X1

Round 1

Round 2

Round 3

Round 4

Round 5

Round 6

Round 7

Round 8

Round 9

Round 10

X2

X3

X4

X5

X6

X7

X8

X9

X10

X0

C

P

K

Figure 8.5: The AES rounds.

Each round is built from four basic steps:
1. SubBytes step: an S-box substitution step

2. ShiftRows step: a permutation step

3. MixColumns step: a matrix multiplication (Hill cipher) step

4. AddRoundKey step: an XOR step with a round key derived from the
128-bit encryption key

These steps are described in detail in Section 8.5.

8.1. Symmetric Cryptography 401

Implementation of AES

Typical software implementations of AES are optimized for speed of exe-
cution and use several lookup tables to implement the basic steps of each
round. A lookup table stores all the possible values of a function into an
array that is indexed by the input of the function. It can be shown that
the 128-bit version of the AES algorithm can be implemented using exactly
eight lookup tables, each mapping an input byte (an 8-bit word) to an
output int (a 32-bit word). Thus, each of the eight lookup tables stores
256, 32-bit ints. The lookup tables are precomputed and accessed during
encryption and decryption.

Using the lookup tables, a round of AES encryption or decryption is
implemented by a combination of only three types of operations:

• XOR of two ints: y = x1 ⊕ x2, where x1, x2, and y are ints

• Split of an int into 4 bytes: (y1, y2, y3, y4) = x, where y1, y2, y3, and y4
are bytes and x is an int

• Table lookup of an int indexed by a byte: y = T[x], where y is an int
and x is a byte

Attacks on AES

As of early 2010, AES is considered a highly secure symmetric cryptosys-
tem. Indeed, the only known practical attacks on AES are side channel
attacks.

Variations of a timing attack on high-performance software implemen-
tations of AES were independently discovered in 2005 by Bernstein and
by Osvik, Shamir, and Tromer. Recall that to speed up the running time
of AES, the algorithm is implemented using lookup tables. The timing
attack is based on the fact that the cache of the processor where the AES
algorithm is executed will store portions of the lookup tables used in the
implementation of AES. Accessing table entries stored in the cache is much
faster that accessing entries in main memory. Thus, the time it takes to
execute the algorithm provides information about how the lookup tables
are accessed and therefore, the inner workings of the algorithm as well. By
timing multiple executions of the algorithm using the same key on a series
of known plaintexts of known ciphertexts, the attacker can eventually learn
the key.

If the attacker is on the same system where AES is executed, the key can
be recovered in less than a second. If the attacker and the AES computation
are on different machines, recovering the key takes several hours. To

402 Chapter 8. Cryptography

defend against timing attacks, AES should be implemented in a way that
the execution time remains constant, irrespective of the cache architecture.

Other side channel attacks on AES target hardware implementations,
such as those on a field-programmable gate array (FPGA). For example,
fault attacks induce hardware error conditions during the execution of the
algorithm and compare the resulting corrupted ciphertext with the correct
ciphertext from a regular execution of the algorithm.

8.1.7 Modes of Operation

There are several ways to use a block cipher, such as AES, that operate on
fixed-length blocks. The different ways such an encryption algorithm can
be used are known as its modes of operation. In this section, we discuss
several of the most commonly used modes of operation for block ciphers.
The general scenario is that we have a sequence of blocks, B1, B2, B3, and so
on, to encrypt, all with the same key, K, using a block cipher algorithm, like
AES.

Electronic Codebook (ECB) Mode

The simplest of encryption modes for a block cipher encrypts each block, Bi,
independently. That is, this mode, which is known as electronic codebook
mode (ECB) mode, involves encrypting the block, Bi, according to the
following formula:

Ci = EK(Bi),

were EK denotes the block encryption algorithm using key K. Likewise,
decryption is by the following formula:

Bi = DK(Ci),

where DK denotes the block decryption algorithm using key K.
This mode has the advantage of simplicity, of course. In addition, it can

tolerate the loss of a block, such as might occur if the blocks are being sent
as packets over a network. This resilience to block loss comes from the fact
that decrypting the ciphertext for a block, Bi, does not depend in any way
on the block, Bi−1.

The disadvantage of using this mode, however, is that, if our encryption
algorithm is completely deterministic, like AES, so that each plaintext has a
unique associated ciphertext, then the ECB mode may reveal patterns that
might appear in the stream of blocks. In this case, identical blocks will
have identical encryptions in ECB mode. For example, in a large image file,
blocks of the image that are the same color, and are therefore identical, will

8.1. Symmetric Cryptography 403

be encrypted in the same way. This disadvantage of ECB mode allows an
encryption of a sequence of blocks sometimes to reveal a surprising amount
of information, as illustrated in Figure 8.6.

(a) (b)

Figure 8.6: How ECB mode can leave identifiable patterns in a sequence
of blocks: (a) An image of Tux the penguin, the Linux mascot. (b) An
encryption of the Tux image using ECB mode. (The image in (a) is by
Larry Ewing, lewing@isc.tamu.edu, using The Gimp; the image in (b) is
by Dr. Juzam. Both are used with permission via attribution.)

Cipher-Block Chaining (CBC) Mode

An encryption mode that avoids the revelation of patterns in a sequence
of blocks is the cipher-block chaining mode (CBC). In this mode of oper-
ation, the first plaintext block, B1, is exclusive-ored with an initialization
vector, C0, prior to being encrypted, and each subsequent plaintext block is
exclusive-ored with the previous ciphertext block prior to being encrypted.
That is, setting C0 to the initialization vector, then

Ci = EK(Bi ⊕ Ci−1).

Decryption is handled in reverse,

Bi = DK(Ci)⊕ Ci−1,

where we use the same initialization vector, C0, since exclusive-or is a self-
inverting function.

This mode of operation has the advantage that if identical blocks appear
at different places in the input sequence, then they are very likely to have

404 Chapter 8. Cryptography

different encryptions in the output sequence. So it is difficult to determine
patterns in an encryption that is done using CBC mode, which corrects a
disadvantage of ECB mode.

CBC mode does not allow the encryption of the blocks in a sequence to
be done independently. That is, the sequence of blocks must be encrypted
sequentially, with the encryption of block i − 1 completing before the en-
cryption of block i can begin.

Decryption, on the other hand, can proceed in parallel if all the cipher-
text blocks are available. This asymmetry is due to the fact that both the
encryption and decryption of block i uses the ciphertext block i − 1. This
block is available during encryption only through a sequential process. But
all the encryptions are available for decryption; hence, the decryption can
be done in parallel.

In addition, this property implies that the decryption process can tol-
erate the loss of a ciphertext block. For if block Ci is lost, it implies that
decryption of blocks i and i + 1 are lost. But decryption of block i + 2 can
still be done, since it relies only on Ci+1 and Ci+2.

Cipher Feedback (CFB) Mode

The cipher feedback mode (CFB) for block encryption algorithms is similar
to that of the CBC mode. Like the CBC, the encryption for block Bi involves
the encryption, Ci−1, of the previous block. The encryption begins with an
initialization vector, C0. It computes the encryption of the ith block as

Ci = EK(Ci−1)⊕ Bi.

That is, the ith block is encrypted by first encrypting the previous ciphertext
block and then exclusive-oring that with the ith plaintext block. Decryption
is done similarly, as follows:

Bi = EK(Ci−1)⊕ Ci.

That is, decryption of the ith ciphertext block also involves the encryption
of the (i − 1)st ciphertext block. The decryption algorithm for the block
cipher is actually never used in this mode. Depending on the details of
the block cipher, this property could allow decryption to proceed faster by
using the CFB mode than by using the CBC mode.

8.1. Symmetric Cryptography 405

Output Feedback (OFB) Mode

In the output feedback mode (OFB), a sequence of blocks is encrypted much
as in the one-time pad, but with a sequence of blocks that are generated
with the block cipher. The encryption algorithm begins with an initializa-
tion vector, V0. It then generates a sequence of vectors,

Vi = EK(Vi−1).

Given this sequence of pad vectors, we perform block encryptions as fol-
lows:

Ci = Vi ⊕ Bi.

Likewise, we perform block decryptions as follows:

Bi = Vi ⊕ Ci.

Thus, this mode of operation can tolerate block losses, and it can be
performed in parallel, both for encryption and decryption, provided the
sequence of pad vectors has already been computed.

Counter (CTR) Mode

In counter mode (CTR), every step of encryption and decryption can be
done in parallel. This mode is similar to the OFB in that we perform
encryption through an exclusive-or with a generated pad. In fact, the
method is essentially that mentioned in Section 8.1.4. We start with a
random seed, s, and compute the ith offset vector according to the formula

Vi = EK(s + i− 1),

so the first pad is an encryption of the seed, the second is an encryption of
s + 1, the third is an encryption of s + 2, and so on. Encryption is performed
as in the OFB mode, but with these generated vectors,

Ci = Vi ⊕ Bi.

Likewise, we perform block decryptions as follows:

Bi = Vi ⊕ Ci.

In this case, the generation of the pad vectors, as well as encryptions and
decryptions, can all be done in parallel. This mode is also able to recover
from dropped blocks.

406 Chapter 8. Cryptography

8.2 Public-Key Cryptography

As we saw to some degree with the AES cryptosystem, a trend in modern
cryptography is to view blocks of bits as large numbers represented in
binary. Doing this requires that we have a set of tools available for operating
on large numbers, many of which we discuss in the next section.

8.2.1 Modular Arithmetic

When we operate on blocks of bits as large numbers, we need to make sure
that all our operations result in output values that can be represented using
the same number of bits as the input values. The standard way of achieving
this is to perform all arithmetic modulo the same number, n. That is, after
each operation, be it an addition, multiplication, or other operation, we
return the remainder of a division of the result with n. Technically, this
means that we are performing arithmetic in Zn, which is the set of integers

Zn = {0, 1, 2, · · · , n− 1}.

So algorithms for performing addition, subtraction, and multiplication
are basically the same as with standard integers, with this added step of
reducing the result to a value in Zn.

Modulo Operator

Operation x mod n, referred to as x modulo n, takes an arbitrary integer x
and a positive integer n as operands. The result of this operation is a value
in Zn defined using the following rules:
• If 0 ≤ x ≤ n − 1, that is, x ∈ Zn, then x mod n = x. For example,

3 mod 13 = 3 and 0 mod 13 = 0.

• If x ≥ n, then x mod n is the remainder of the division of x by n. For
example, 29 mod 13 = 3 since 29 = 13 · 2 + 3. Also, 13 mod 13 = 0
and 26 mod 13 = 0 since for any multiple of 13, the remainder of its
division by 13 is zero. Note that this rule generalizes the previous
rule.

• Finally, if x < 0, we add a sufficiently large multiple of n to x,
denoted by kn, to get a nonnegative number y = x + kn. We have that
x mod n = y mod n. Since y is nonnegative, the operation y mod n

8.2. Public-Key Cryptography 407

can be computed using the previous rules. For example, to compute
−27 mod 13, we can add 3 · 13 = 39 to −27 to obtain

y = −27 + 3 · 13 = −27 + 39 = 12.

Thus, we have

−27 mod 13 = 12 mod 13 = 12.

In order to find a multiple kn of n greater than x, we can set k as 1 plus
the integer division (division without remainder) of −x by n, that is,

k = 1 +
⌊ x

n

⌋
.

For example, for x = −27 and n = 13, we have

k = 1 + b27/13c = 1 + 2 = 3.

In general, we have that x mod n and −x mod n are different.
Several examples of operations modulo 13 are shown below:
29 mod 13 = 3; 13 mod 13 = 0; 0 mod 13 = 0; −1 mod 13 = 12.

We can visualize the modulo operator by repeating the sequence of num-
bers 0, 1, 2, · · · (n− 1), as shown in Figure 8.7.

x ... -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 ...

x mod 5 ... 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 ...

Figure 8.7: Operation x mod 5.

Modular Inverses

The notion of division in Zn is not so easy to grasp, however. We can limit
ourselves to consider the inverse x−1 of a number x in Zn since we can
write a/b as ab−1. We say that y is the modular inverse of x, modulo n, if
the following holds:

xy mod n = 1.

For example, 4 is the inverse of 3 in Z11 since

4 · 3 mod 11 = 12 mod 11 = 1.

We have that elements 1 and n− 1 of Zn always admit an inverse modulo n.
Namely, the inverse of 1 is 1 and the inverse of n− 1 is n− 1. However, not
every other number in Zn admits a modular inverse, as can be seen from the
multiplication table of Figure 8.8.a, which shows the products xy mod 10
for x, y ∈ Zn. However, if n is a prime number, then every element but zero
in Zn admits a modular inverse, as shown in Figure 8.8.b.

408 Chapter 8. Cryptography

0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8 9

2 0 2 4 6 8 0 2 4 6 8

3 0 3 6 9 2 5 8 1 4 7

4 0 4 8 2 6 0 4 8 2 6

5 0 5 0 5 0 5 0 5 0 5

6 0 6 2 8 4 0 6 2 8 4

7 0 7 4 1 8 5 2 9 6 3

8 0 8 6 4 2 0 8 6 4 2

9 0 9 8 7 6 5 4 3 2 1

0 1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8 9 10

2 0 2 4 6 8 10 1 3 5 7 9

3 0 3 6 9 1 4 7 10 2 5 8

4 0 4 8 1 5 9 2 6 10 3 7

5 0 5 10 4 9 3 8 2 7 1 6

6 0 6 1 7 2 8 3 9 4 10 5

7 0 7 3 10 6 2 9 5 1 8 4

8 0 8 5 2 10 7 4 1 9 6 3

9 0 9 7 5 3 1 10 8 6 4 2

10 0 10 9 8 7 6 5 4 3 2 1

(a) (b)

Figure 8.8: Modular multiplication tables in Zn for n = 10 and n = 11,
with highlighted elements that have a modular inverse: (a) xy mod 10. (b)
xy mod 11.

Modular Exponentiation

Finally, we consider modular exponentiation, that is, operation

xy mod n.

Figure 8.9 shows successive modular powers

x1 mod n, x2 mod n, · · · , xn−1 mod n

and illustrates the following patterns:
• If n is not prime, as for n = 10 shown in Figure 8.9.a, there are

modular powers equal to 1 only for the elements of Zn that are
relatively prime with n. These are exactly the elements x such that
the greatest common divisor (GCD) of x and n is equal to 1, as is the
case for 1, 3, 7, and 9 for n = 10.

• If n is prime, as for n = 13 shown in Figure 8.9.b, every nonzero
element of Zn has a power equal to 1. In particular, we always have

xn−1 mod n = 1.

We can generalize the patterns above by considering the subset Z∗n of Zn
consisting of the elements relatively prime with n, that is, the set

Z∗n = {x ∈ Zn such that GCD(x, n) = 1}.

8.2. Public-Key Cryptography 409

1 2 3 4 5 6 7 8 9

1
y

1 1 1 1 1 1 1 1 1

2
y

2 4 8 6 2 4 8 6 2

3
y

3 9 7 1 3 9 7 1 3

4
y

4 6 4 6 4 6 4 6 4

5
y

5 5 5 5 5 5 5 5 5

6
y

6 6 6 6 6 6 6 6 6

7
y

7 9 3 1 7 9 3 1 7

8
y

8 4 2 6 8 4 2 6 8

9
y

9 1 9 1 9 1 9 1 9

y

1 2 3 4 5 6 7 8 9 10 11 12

1
y

1 1 1 1 1 1 1 1 1 1 1 1

2
y

2 4 8 3 6 12 11 9 5 10 7 1

3
y

3 9 1 3 9 1 3 9 1 3 9 1

4
y

4 3 12 9 10 1 4 3 12 9 10 1

5
y

5 12 8 1 5 12 8 1 5 12 8 1

6
y

6 10 8 9 2 12 7 3 5 4 11 1

7
y

7 10 5 9 11 12 6 3 8 4 2 1

8
y

8 12 5 1 8 12 5 1 8 12 5 1

9
y

9 3 1 9 3 1 9 3 1 9 3 1

10
y

10 9 12 3 4 1 10 9 12 3 4 1

11
y

11 4 5 3 7 12 2 9 8 10 6 1

12
y

12 1 12 1 12 1 12 1 12 1 12 1

y

(a) (b)

Figure 8.9: Modular exponentiation tables in Zn for n = 10 and n = 13, with
highlighted powers equal to 1 and elements of Zn that have some power
equal to 1: (a) xy mod 10. (b) xy mod 13.

For example, for n = 10, we have

Z∗10 = {1, 3, 7, 9}.

Also, if n is prime, we always have

Z∗n = {1, 2, · · · , (n− 1)}.

Let φ(n) be the number of elements of Z∗n, that is,

φ(n) = |Z∗n| .

Function φ(n) is called the totient of n. The following property, known as
Euler’s Theorem, holds for each element x of Z∗n:

xφ(n) mod n = 1.

A consequence of Euler’s theorem is that we can reduce the exponent
modulo φ(n):

xy mod n = xy mod φ(n) mod n.

Note given two elements x and y of Z∗n, their modular product xy mod n
is also in Z∗n. Also, for each element x of Z∗n, the modular inverse of x
is xφ(n)−1. Indeed, we have

x · xφ(n)−1 mod n = xφ(n) mod n = 1.

More details on modular arithmetic are given in Section 8.5.2.

410 Chapter 8. Cryptography

8.2.2 The RSA Cryptosystem

Recall that in a public-key cryptosystem, encryption is done with a pub-
lic key, KP, associated with the intended recipient, Bob, of the plaintext
message, M. The sender, Alice, doesn’t have to have a prior relationship
with Bob and she doesn’t have to have figured out a way to share a secret
key with Bob, as she would if she wanted to use a symmetric encryption
scheme, like AES, to secretly communicate with Bob. Once the message
M has been transformed into a ciphertext, C = EKP(M), Alice sends C to
Bob. Bob is then able to decrypt the ciphertext C using his secret key, KS, by
using the appropriate decryption method, DKS(C).

In this section, we describe a specific public-key cryptosystem, which
is named RSA, after its inventors, Ronal Rivest, Adi Shamir, and Leonard
Adleman (see Figure 8.10). In this cryptosystem, we treat plaintext and
ciphertext message blocks as large numbers, represented using thousands
of bits. Encryption and decryption are done using modular exponentiation
and the correctness of these encryption and decryption algorithms is based
on Euler’s Theorem and other properties of modular arithmetic.

Figure 8.10: The inventors of the RSA cryptosystem, from left to right,
Adi Shamir, Ron Rivest, and Len Adleman, who received the Turing Award
in 2002 for this achievement. (Image used with permission from Ron Rivest
and Len Adleman.)

8.2. Public-Key Cryptography 411

RSA Encryption and Decryption

The setup for RSA allows a potential message receiver, Bob, to create his
public and private keys. It begins with Bob generating two large, random
prime numbers, p and q, and setting n = pq. He then picks a number, e,
that is relatively prime to φ(n), and he computes d = e−1 mod φ(n). From
this point on, he can “throw away” the values of p, q, and φ(n). They are
no longer needed. Bob’s public key is the pair, (e, n). His private key is d.
He needs to keep d a secret, but he should publish (e, n) to any places that
might allow others to use it to send Bob encrypted messages.

Given Bob’s public key, (e, n), Alice can encrypt a message, M, for him
by computing

C = Me mod n.

Thus, encrypting M requires a single modular exponentiation.
To decrypt the ciphertext, C, Bob performs a modular exponentiation,

Cd mod n,

and sets the result to M. This is, in fact, the plaintext that Alice encrypted,
as the following shows for the case when M is relatively prime to n:

Cd mod n = (Me)d mod n
= Med mod n
= Med mod φ(n) mod n
= M1 mod n
= M.

When M is not relatively prime to n, it must still be relatively prime to either
p or q, since M < n. So, in the case that M = ip (with a similar argument
for when M = iq),

Mφ(n) mod q = 1,

by Euler’s Theorem, since φ(n) = φ(p)φ(q). Thus, Mkφ(n) mod q = 1,
where k is defined so that ed = kφ(n) + 1. So Mkφ(n) = 1 + hq, for some
integer h; hence, multiplying both sides by M, we see that Mkφ(n)+1 =
M + Mhq. But, in this case, M = ip, which implies

Mkφ(n)+1 mod n = (M + Mhq) mod n
= (M + iphq) mod n
= (M + (ih)pq) mod n
= (M + (ih)n) mod n
= M.

Thus, we have shown the correctness of the RSA decryption method.

412 Chapter 8. Cryptography

The Security of the RSA Cryptosystem

The security of the RSA cryptosystem is based on the difficulty of finding
d, given e and n. If we knew φ(n) = (p − 1)(q − 1), it would be easy
to compute d from e. Thus, Bob needs to keep p and q secret (or even
destroy all knowledge of them), since anyone who knows the values of
p and q immediately knows the value of φ(n). Anyone who knows the
value of φ(n) can compute d = e−1 mod φ(n), using the extended Euclidian
algorithm.

Thus, the security of the RSA cryptosystem is closely tied to factoring n,
which would reveal the values of p and q. Fortunately, since this problem
has shown itself to be hard to solve, we can continue to rely on the security
of the RSA crptosystem, provided we use a large enough modulus. As
of 2010, a 2,048-bit modulus is recommended. Side channel attacks have
also been demonstrated on RSA, based on measuring the time taken by
decryption and/or the power consumption of the CPU performing the
operation.

We must take some care in how we use the RSA cryptosystem, however,
because of its deterministic nature. For example, suppose we use the
RSA algorithm to encrypt two plaintext messages, M1 and M2, into the
respective ciphertexts, C1 and C2, using the same public key. Because RSA
is deterministic, we know that, in this case, if C1 = C2, then M1 = M2.
Unfortunately, this fact could allow a cryptanalyst to infer information from
ciphertexts encrypted from supposedly different plaintexts. The cryptosys-
tem we discuss in Section 8.2.3 does not have the same disadvantage.

Efficient Implementation the RSA Cryptosystem

The implementation of the RSA cryptosystem requires efficient algorithms
for the following tasks:
• Primality testing, that is, testing if an integer is prime. This algorithm

is used in the setup phase to pick the factors p and q of the RSA
modulus. Each factor is picked by generating a series of random
numbers and stopping as soon as a prime is found.

• Computing the greatest common divisor, which is used in the setup
phase to pick the encryption exponent.

• Computing the modular inverse, which is used in the setup phase to
compute the decryption exponent given the encryption exponent.

• Modular power, used in the encryption and decryption algorithms.
Clearly, first computing the power and then applying the modulo
operator is inefficient since the power can be a very large number.

In Section 8.5.2, we present an efficient algorithm for these tasks.

8.2. Public-Key Cryptography 413

8.2.3 The Elgamal Cryptosystem

The Elgamal cryptosystem, named after its inventor, Taher Elgamal, is
a public-key cryptosystem that uses randomization, so that independent
encryptions of the same plaintext are likely to produce different ciphertexts.
It is based on viewing input blocks as numbers and applying arithmetic
operations on these numbers to perform encryption and decryption. Be-
fore we give the details for this cryptosystem, let us discuss some related
concepts from number theory.

In the number system Zp, all arithmetic is done modulo a prime number,
p. A number, g in Zp, is said to be a generator or primitive root modulo p if,
for each positive integer i in Zp, there is an integer k such that i = gk mod p.

It turns out that there are φ(φ(p)) = φ(p − 1) generators for Zp. So
we can test different numbers until we find one that is a generator. To test
whether a number, g, is a generator, it is sufficient that we test that

g(p−1)/pi mod p 6= 1,

for each prime factor, pi, of φ(p) = p − 1. If a number is not a generator,
one of these powers will be equal to 1. Normally, it would be hard to factor
p− 1, to find all its prime factors. But we can actually make this job easy by
choosing candidates for the prime number p in such a way that we know
the factoring of p− 1. The Elgamal cryptosystem requires such a generator,
so let us assume here that we can choose any prime number, p, in a way
that facilitates our ability to quickly find a generator, g, for Zp.

Once we have a generator g, we can efficiently compute x = gk mod p,
for any value k (see Section 8.5.2 for details). Conversely, given x, g, and
p, the problem of determining k such that x = gk mod p is known as the
discrete logarithm problem. Like factoring, the discrete logarithm problem
is widely believed to be computationally hard. The security of the Elgamal
cryptosystem depends on the difficulty of the discrete logarithm problem.

As a part of the setup, Bob chooses a random large prime number, p, and
finds a generator, g, for Zp. He then picks a random number, x, between 1
and p− 2, and computes y = gx mod p. The number, x, is Bob’s secret key.
His public key is the triple (p, g, y).

When Alice wants to encrypt a plaintext message, M, for Bob, she begins
by getting his public key, (p, g, y). She then generates a random number,
k, between 1 and p − 2, and she then uses modular multiplication and
exponentiation to compute two numbers:

a = gk mod p
b = Myk mod p.

The encryption of M is the pair (a, b).

414 Chapter 8. Cryptography

Decryption and Security Properties

Note that an Elgamal encryption is dependent on the choice of the random
number, k. Moreover, each time Alice does an Elgamal encryption, she must
use a different random number. If she were to reuse the same random
number, she would be leaking information much like the one-time pad
would leak information if we were to reuse a pad.

Given an Elgamal ciphertext, (a, b), created for Bob, he can decrypt this
ciphertext by computing ax mod p, computing the inverse of this value
modulo p, and multiplying the result by b, modulo p. This sequence of
computations gives Bob the following:

M = b(ax)−1 mod p.

The reason this actually decrypts the ciphertext is as follows:

b(ax)−1 mod p = Myk(gkx)−1 mod p
= M(gx)kg−kx mod p
= Mgxkg−kx mod p
= Mgkxg−kx mod p
= M mod p
= M.

Note that Bob doesn’t need to know the random value, k, to decrypt a
message that was encrypted using this value. And Alice didn’t need to
know Bob’s secret key to encrypt the message for him in the first place.
Instead, Alice got gx, as y, from Bob’s public key, and Bob got gk, as a,
from Alice’s ciphertext. Alice raised y to the power k and Bob raised a
to the power x, and in so doing they implicitly computed a type of one-
time shared key, gxk, which Alice used for encryption and Bob used for
decryption.

The security of this scheme is based on the fact that, without knowing
x, it would be very difficult for an eavesdropper to decrypt the ciphertext,
(a, b). Since everyone knows y = gx mod p, from Bob’s public key, the secu-
rity of this scheme is therefore related to the difficulty of solving the discrete
logarithm problem. That is, Elgamal could be broken by an eavesdropper
finding the secret key, x, given only y, knowing that y happens to be equal
to gx mod p. As previously mentioned, the discrete logarithm problem is
another one of those problems generally believed to be computationally
difficult. Thus, the security of the Elgamal cryptosystem is based on a
difficult problem from number theory.

8.2. Public-Key Cryptography 415

8.2.4 Key Exchange

The use of a symmetric cryptosystem requires that Alice and Bob agree
on a secret key before they can send encrypted messages to each other.
This agreement can be accomplished, for example, by the one-time use of a
private communication channel, such as an in-person meeting in a private
room, or mailing in tamper-proof containers. A key exchange protocol,
which is also called key agreement protocol, is a cryptographic approach to
establishing a shared secret key by communicating solely over an insecure
channel, without any previous private communication.

Intuitively, the existence of a key exchange protocol appears unlikely,
as the adversary can arbitrarily disrupt the communication between Alice
and Bob. Indeed, it can be shown that no key exchange protocol exists if
the adversary can actively modify messages sent over the insecure channel.
Nevertheless, key exchange can be successfully accomplished if the adver-
sary is limited to only passive eavesdropping on messages.

The classic Diffie-Hellman key exchange protocol (DH protocol), which
is named after its inventors, Whitfield Diffie and Martin Hellman, is based
on modular exponentiation. The DH protocol assumes that the follow-
ing two public parameters have been established and are known to all
participants (including the attacker): a prime number, p, and a generator
(Section 8.2.3), g, for Zp. The DH protocol consists of the following steps:

1. Alice picks a random positive number x in Zp and uses it to compute
X = gx mod p. She sends X to Bob.

2. Bob picks a random positive number y in Zp and uses it to compute
Y = gy mod p. He sends Y to Alice.

3. Alice computes the secret key as K1 = Yx mod p.

4. Bob computes the secret key as K2 = Xy mod p.
Note that Steps 1–2 can be performed in parallel. Similarly, Steps 3–4 can
also be performed in parallel. At the end of the protocol, Alice and Bob
have computed the same secret key K = gxy mod p = K1 = K2, since

K1 = Yx mod p = (gy)x mod p = (gx)y mod p = Xy mod p = K2.

The security of the DH protocol is based on the assumption that it is difficult
for the attacker to determine the key K from the public parameters and the
eavesdropped values X and Y. Indeed, recovering either x from X or y from
Y is equivalent to solving the discrete logarithm problem, which is believed
to be computationally hard, as discussed in Section 8.2.3. More generally,
no methods are known for efficiently computing K = gxy mod p from p,
g, X = gx mod p and Y = gy mod p, which is called the Diffie-Hellman
problem.

416 Chapter 8. Cryptography

Even though it is secure against a passive attacker, the DH protocol is
vulnerable to a man-in-the-middle attack if the attacker can intercept and
modify the messages exchanged by Alice and Bob. The attack, illustrated in
Figure 8.11, results in Alice and Bob unknowingly selecting different keys
that are known to the attacker, who can subsequently decrypt all ciphertexts
exchanged by Alice and Bob.

The attack works as follows:

1. The attacker picks numbers s and t in Zp.

2. When Alice sends the value X = gx mod p to Bob, the attacker reads
it and replaces it with T = gt mod p.

3. When Bob sends the value Y = gy mod p to Alice, the attacker reads
it and replaces it with S = gs mod p.

4. Alice and the attacker compute key K1 = gxs mod p.

5. Bob and the attacker compute key K2 = gy t mod p.

6. When Alice sends a message to Bob encrypted with the key K1, the
attacker decrypts it, reencrypts it with the key K2 and sends it to Bob.

7. When Bob sends a message to Alice encrypted with the key K2, the
attacker decrypts it, reencrypts it with the key K1 and sends it to Alice.

Alice BobAttackerAlice BobAttackerX = gx Y = gy

S = gs T = gt

K1 = gxs K1 = gxs K2 = gyt K2 = gyt

encrypt encryptdecrypt decrypt

Figure 8.11: The man-in-the-middle attack against the DH protocol. First, by
intercepting and modifying the messages of the DH protocol, the attacker
establishes a secret key, K1, with Alice and secret key, K2, with Bob. Next,
using keys K1 and K2, the attacker reads and forwards messages between
Alice and Bob by decrypting and reencrypting them. Alice and Bob are
unaware of the attacker and believe they are communicating securely with
each other.

8.3. Cryptographic Hash Functions 417

8.3 Cryptographic Hash Functions

As mentioned previously, we often wish to produce a compressed digest
of a message. A cryptographic hash function serves this purpose, while
also providing a mapping that is deterministic, one-way, and collision-
resistant. Cryptographic hash functions were introduced in Section 1.3.4.
In this section, we discuss them in more detail.

8.3.1 Properties and Applications

One of the critical properties of cryptographic hash functions is that they
are one-way. That is, given a message, M, it should be easy to compute a
hash value, H(M), from that message. However, given only a value, x, it
should be difficult to find a message, M, such that x = H(M). Moreover,
the hash value should be significantly smaller than a typical message. For
example, the commonly used standard hash function SHA-256 produces
hash values with 256 bits. This hash function uses several of the techniques
employed in symmetric encryption, including substitution, permutation,
exclusive-or, and iteration, in a way that provides so much diffusion of the
input that changing any bit in the input could potentially impact the value
of every bit in the output. Rather than go into these details, however, let
us discuss the properties of cryptographic hash functions and how they are
used.

Collision Resistance

A hash function, H, is a mapping of input strings to smaller output strings.
We say that H has weak collision resistance if, given any message, M, it is
computationally difficult to find another message, M′ 6= M, such that

H(M′) = H(M).

Hash function H has strong collision resistance if it is computationally
difficult to compute two distinct messages, M1 and M2, such that H(M1) =
H(M2). That is, in weak collision resistance, we are trying to avoid a
collision with a specific message, and in strong collision resistance we are
trying to avoid collisions in general. It is usually a challenge to prove that
real-world cryptographic hash functions have strong collision resistance, so
cryptographers typically provide experimental evidence for this property.

418 Chapter 8. Cryptography

The Merkle-Damgård Construction

A common structure for a hash function is to use as a building block a
cryptographic compression function C(X, Y), which is a cryptographic hash
function C that takes as input two strings, X and Y, where X has fixed
length m and Y has fixed length n, and produces a hash value of length n.
Given a message M, we divide M into multiple blocks, M1, M2, . . ., Mk,
each of length m, where the last block is padded in an unambiguous way
with additional bits to make it of length m. We start by applying the
compression function C to the first block, M1, and a fixed string v of length
n, known as the initialization vector. Denote the resulting hash value
with d1 = C(M1, v). Next, we apply the compression function to block
M2 and d1, resulting in hash value d2 = C(M2, d1), and so on. We define
the hash value of message H as equal to dk. This method for constructing
a cryptographic hash function from a cryptographic compression function,
illustrated in Figure 8.12, is known as the Merkle-Damgård construction,
after his inventors Ralph Merkle and Ivan Damgård.

v = d0

M1 M2 M3 M4 M5

C C C CCd1 d2 d3 d4 d5= d

Figure 8.12: The Merkle-Damgård construction.

In the Merkle-Damgård construction, if an attacker finds a collision
between two different messages, M1 and M2, i.e., H(M1) = H(M2), then
he can form other arbitrary collisions, Indeed, for any message P, we have

H(M1||P) = H(M2||P),

where the “||” symbol denotes string concatenation. Thus, it is important
for a compression function to have strong collision resistance.

Practical Hash Functions for Cryptographic Applications

The hash functions currently recommended for cryptographic applications
are the SHA-256 and SHA-512 functions standardized by NIST, where SHA
stands for “secure hash algorithm” and the numeric suffix refers to the
length of the hash value. These functions follows the Merkle-Damgård

8.3. Cryptographic Hash Functions 419

construction. SHA-256 employs a compression function with inputs of
m = 512 bits and n = 256 bits and produces hash values of n = 256 bits.
These parameters are m = 1, 024 and n = 512 for SHA-512.

The MD5 hash function, where MD refers to “message digest”, is still
widely used in legacy applications. However, it is considered insecure as
several attacks against it have been demonstrated. In particular, it has been
shown that given two arbitrary messages, M1 and M2, one can efficiently
compute suffixes S1 and S2 such that M1||P1 and M2||P2 collide under MD5.
For example, using this approach, one can generate different PDF files or
executable files with the same MD5 hash, a major vulnerability.

8.3.2 Birthday Attacks

The chief way that cryptographic hash functions are attacked is by com-
promising their collision resistance. Sometimes this is done by careful
cryptanalysis of the algorithms used to perform cryptographic hashing. But
it can also be done by using a brute-force technique known as a birthday
attack. This attack is based on a nonintuitive statistical phenomenon that
states that as soon as there are more than 23 people in a room, there is better
than a 50-50 chance that two of the people have the same birthday. And if
there are more than 60 people in a room, it is almost certain that two of
them share a birthday. The reason for this fact is that if there are 23 people
in a room, there are

23 · 22/2 = 253

possible pairs of people, all of which would have to be different for there to
be no two people with the same birthday. When there are 60 people in the
room, the number of distinct pairs of people is

60 · 59/2 = 1770.

Suppose that a cryptographic hash function, H, has a b-bit output. We have
that the number of possible hash values is 2b. We might at first think that
an attacker, Eve, needs to generate a number of inputs proportional to 2b

before she finds a collision, but this is not the case.
In the birthday attack, Eve generates a large number of random mes-

sages and she computes the cryptographic hash value of each one, hoping
to find two messages with the same hash value. By the same type of
argument used for the birthday coincidence in a room full of people, if
the number of messages generated is sufficiently large, there is a high
likelihood that two of the messages will have the same hash value. That is,
there is a high likelihood of a collision in the cryptographic hash function

420 Chapter 8. Cryptography

among the candidates tested. All Eve has to do is to sort the set of generated
values to find a pair that are equal. Eve does not need to try a number
of messages that are proportional to 2b, but can reduce that to something
on the order of 2b/2. For this reason, we usually think of the security of a
cryptographic hash function in terms of half of the size of its output. Thus, a
collision-resistant hash function with 256-bit has values has 128-bit security.

Analysis of the Birthday Attack

We now outline the mathematical analysis of the birthday attack. Consider
a b-bit hash function and let m = 2b denote the number of possible hash
values. The probability that the i-th message generated by the attacker does
not collide with any of the previous i− 1 messages is

1− i− 1
m

.

Thus, the failure probability at round k, that is, the probability the attacker
has not found any collisions after generating k message, is

Fk =
(

1− 1
m

)
+
(

1− 2
m

)
+
(

1− 3
m

)
+ · · ·+

(
1− k− 1

m

)
.

To find a closed-form expression for Fk, we use the following standard
approximation:

1− x ≈ e−x

Thus, we obtain

Fk ≈ e−(
1
m + 2

m + 3
m +···+ k−1

m) = e−
k(k−1)

m .

The attack fails/succeeds with 50% probability when Fk = 1
2 , that is,

e−
k(k−1)

m =
1
2

.

Solving the above expression for k, we get

k ≈ 1.17
√

m.

Note that the number of bits of
√

m is b
2 , half the number of bits of m. This

concludes our justification of the birthday attack.

8.4. Digital Signatures 421

8.4 Digital Signatures

Digital signatures were introduced in Section 1.3.2. In this section, we recall
the definition and main properties of digital signatures and we show how
to use the RSA and Elgamal cryptosystems as digital signature schemes.

A digital signature is a way for an entity to demonstrate the authenticity
of a message by binding its identity with that message. The general frame-
work is that Alice, should be able to use her private key with a signature
algorithm to produce a digital signature, SAlice(M), for a message, M. In
addition, given Alice’s public key, the message, M, and Alice’s signature,
SAlice(M), it should be possible for another party, Bob, to verify Alice’s
signature on M, using just these elements. (See Figure 8.13.)

yesyes

no

Verification
algorithm

no
signature
l ith

g

message
signature

signed message
algorithm

Alice’s public key

Alice’s secret key

Alice Bob

Figure 8.13: The digital signing process for Alice and the signature verifica-
tion process for Bob.

Two important properties that we would like to have for a digital-
signature scheme are the following:

• Nonforgeability. It should be difficult for an attacker, Eve, to forge a
signature, SAlice(M), for a message, M, as if it is coming from Alice.

• Nonmutability. It should be difficult for an attacker, Eve, to take a
signature, SAlice(M), for a message, M, and convert SAlice(M) into a
valid signature on a different message, N.

If a digital-signature scheme achieves these properties, then it actually
achieves one more, nonrepudiation. It should be difficult for Alice to claim
she didn’t sign a document, M, once she has produced a digital signature,
SAlice(M), for that document.

422 Chapter 8. Cryptography

8.4.1 The RSA Signature Scheme

The first digital-signature scheme we study is the RSA signature scheme.
Referring back to the discussion on the RSA cryptosystem from Sec-
tion 8.2.2, recall that, in this cryptosystem, Bob creates a public key, (e, n),
so that other parties can encrypt a message, M, as Ce mod n. In the RSA
signature scheme, Bob instead encrypts a message, M, using his secret key,
d, as follows:

S = Md mod n.

Any third party can verify this signature by testing the following condition:

Is it true that M = Se mod n?

The verification method follows from the fact that de mod φ(n) = 1. In-
deed, we have

Se mod n = Mde mod n = Mde mod φ(n) mod n = M1 mod n = M.

In addition, the verification of the RSA signature scheme involves the same
algorithm as RSA encryption and uses the same public key, (e, n), for Bob.

The nonforgeability of this scheme comes from the difficulty of breaking
the RSA encryption algorithm. In order to forge a signature from Bob on a
message, M, an attacker, Eve, would have to produce Md mod n, but do so
without knowing d. This amounts to being able to decrypt M as if it were
an RSA encryption intended for Bob.

Strictly speaking, the RSA signature scheme does not achieve non-
mutability, however. Suppose, for example, that an attacker, Eve, has two
valid signatures,

S1 = Md
1 mod n and S2 = Md

2 mod n,

from Bob, on two messages, M1 and M2. In this case, Eve could produce a
new signature,

S1 · S2 mod n = (M1 ·M2)d mod n,

which would validate as a verifiable signature from Bob on the message

M1 ·M2.

Fortunately, this issue is not a real problem in practice, for digital signatures
are almost always used with cryptographic hash functions, as discussed in
Section 8.4.3, which fixes this problem with the RSA signature scheme.

8.4. Digital Signatures 423

8.4.2 The Elgamal Signature Scheme

In the Elgamal signature scheme, document signatures are done through
randomization, as in Elgamal encryption, but the details for Elgamal sig-
natures are quite different from Elgamal encryption. Recall that in the
setup for Elgamal encryption, Alice chooses a large random number, p,
finds a generator for Zp, picks a (secret) random number, x, computes
y = gx mod p, and publishes the pair (y, p) as her public key. To sign a
message, M, Alice generates a fresh one-time-use random number, k, and
computes the following two numbers:

a = gk mod p
b = k−1(M− xa) mod (p− 1).

The pair, (a, b), is Alice’s signature on the message, M.
To verify the signature, (a, b), on M, Bob performs the following test:

Is it true that yaab mod p = gM mod p?

This is true because of the following:

yaab mod p = (gx mod p)((gk mod p)k−1(M−xa) mod (p−1) mod p)

= gxagkk−1(M−xa) mod (p−1) mod p
= gxa+M−xa mod p
= gM mod p.

The security of this scheme is based on the fact that the computation of
b depends on both the random number, k, and Alice’s secret key, x. Also,
because k is random, its inverse is also random; hence, it is impossible
for an adversary to distinguish b from a random number, unless she can
solve the discrete logarithm problem to determine the number k from a
(which equals gk mod p). Thus, like Elgamal encryption, the security of the
Elgamal signature scheme is based on the difficulty of computing discrete
logarithms.

In addition, it is important that Alice never reuse a random number, k,
for two different signatures. For instance, suppose she produces

b1 = k−1(M1 − ax) mod (p− 1) and b2 = k−1(M2 − ax) mod (p− 1),

with the same a = gk mod p, for two different messages, M1 and M2. Then

(b1 − b2)k mod (p− 1) = (M1 −M2) mod (p− 1).

Thus, since b1 − b2 and M1 − M2 are easily computed values, an attacker,
Eve, can compute k. And once Eve knows k, she can compute x from either
b1 or b2, and from that point on, Eve knows Alice’s secret key.

424 Chapter 8. Cryptography

8.4.3 Using Hash Functions with Digital Signatures

For practical purposes, the above descriptions of the RSA and Elgamal
digital-signature schemes are not what one would use in practice. For
one thing, both schemes are inefficient if the message, M, being signed is
very long. For instance, RSA signature creation involves an encryption of
the message, M, using a private key, and Elgamal signature verification
requires a modular exponentiation by M. For another, one can construct
valid RSA signatures on combined messages from existing RSA signatures.
Thus, for practical and security reasons, it is useful to be able to restrict
digital signatures to messages that are digests.

For these reasons, real-world, digital-signature schemes are usually
applied to cryptographic hashes of messages, not to actual messages. This
approach significantly reduces the mutability risk for RSA signatures, for
instance, since it is extremely unlikely that the product of two hash values,
H(M) and H(N), would itself be equal to the hash of the product message,
M · N. Moreover, signing a hash value is more efficient than signing a full
message.

Of course, the security of signing hash values depends on both the
security of the signature scheme being used and the security of the crypto-
graphic hash function being used as well. For instance, suppose an attacker,
Eve, has found a collision between two inputs, M and N, with respect to a
hash function, H, so that

H(M) = H(N).

If Eve can then get Alice to sign the hash, H(M), of the message, M, then
Eve has in effect tricked Alice into signing the message M. Thus, in the
context of digital signatures of hash values, the risks of the birthday attack
are heightened.

For example, Eve could construct a large collection of messages, M1,
M2, . . ., Mk, that are all various instances of a purchase agreement for Eve’s
guitar that Alice has agreed to buy for $150. Because of the ambiguity of
English, there are many different instances of the same essential message,
so that each of the messages, Mi, means the same thing. But Eve could also
construct a series of messages, N1, N2, . . ., Nk, that are all variations of a
purchase agreement for Eve’s car that says Alice is agreeing to buy it for
$10,000. If Eve can find a collision between some Mi and Nj so that

H(Mi) = H(Nj),

then by getting Alice to sign the message Mi agreeing to buy Eve’s guitar,
Eve has also tricked Alice into signing the message Nj, agreeing to buy
Eve’s car.

8.5. Details of AES and RSA Cryptography 425

8.5 Details of AES and RSA Cryptography

In this section, we give the details for the AES and RSA cryptosystems.

8.5.1 Details for AES

We provide a detailed description of the AES symmetric encryption algo-
rithm for 128-bit keys. Recall that in Section 8.1.6, we discussed the ten
rounds, built from four basic steps, of the 128-bit version of the AES algo-
rithm. The algorithm starts with an AddRoundKey step applied directly to
a 128-bit block of plaintext. It then performs the four steps repeatedly and
in the order outlined in Section 8.1.6 for nine rounds, with the input of each
step coming from the output of the previous step. Then, in the tenth round
it performs the same set of steps, but with the MixColumns step missing, to
produce a 128-bit block of ciphertext. As we discuss below, each of the steps
is invertible, so the decryption algorithm essentially amounts to running
this algorithm in reverse, to undo each of the transformations done by each
step.

Matrix Representation

To provide some structure to the 128-bit blocks it operates on, the AES al-
gorithm views each such block, starting with the 128-bit block of plaintext,
as 16 bytes of 8 bits each,

(a0,0, a1,0, a2,0, a3,0, a0,1, a1,1, a2,1, a3,1, a0,2, a1,2, a2,2, a3,2, a0,3, a1,3, a2,3, a3,3),

arranged in column-major order into a 4× 4 matrix as follows:

a0,0 a0,1 a0,2 a0,3
a1,0 a1,1 a1,2 a1,3
a2,0 a2,1 a2,2 a2,3
a3,0 a3,1 a3,2 a3,3

 .

426 Chapter 8. Cryptography

SubBytes Step

In the SubBytes step, each byte in the matrix is substituted with a replace-
ment byte according to the S-box shown in Figure 8.14, resulting in the
following transformation:

a0,0 a0,1 a0,2 a0,3
a1,0 a1,1 a1,2 a1,3
a2,0 a2,1 a2,2 a2,3
a3,0 a3,1 a3,2 a3,3

→

b0,0 b0,1 b0,2 b0,3
b1,0 b1,1 b1,2 b1,3
b2,0 b2,1 b2,2 b2,3
b3,0 b3,1 b3,2 b3,3

 .

This S-box is actually a lookup table for a mathematical equation on
8-bit binary words that operates in an esoteric number system known as
GF(28). Such an interpretation is not necessary for performing the SubBytes
step, however, since we can perform this step with a simple lookup in the
S-box table. So we omit the details of this equation here. Likewise, the
inverse of this step, which is needed for decryption, can also be done with
a fast and simple S-box lookup, which we also omit.

0 1 2 3 4 5 6 7 8 9 a b c d e f
0 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
1 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0
2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
3 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75
4 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
5 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
6 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8
7 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
8 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
a e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79
b e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
c ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
d 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e
e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df
f 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

Figure 8.14: The S-box used in the SubBytes step of AES. Each byte is shown
in hexadecimal notation, which encodes each 4-bit string as a digit 0–9 or
a–f. Each byte is indexed according to the first and second 4-bits in the byte
to be transformed.

8.5. Details of AES and RSA Cryptography 427

ShiftRows Step

The ShiftRows step is a simple permutation, which has the effect of mixing
up the bytes in each row of the 4× 4 matrix output from the SubBytes step.
The permutation amounts to a cyclical shift of each row of the 4× 4 matrix
so that the first row is shifted left by 0, the second is shifted left by 1, the
third is shifted left by 2, and the fourth is shifted left by 3, as follows:

b0,0 b0,1 b0,2 b0,3
b1,0 b1,1 b1,2 b1,3
b2,0 b2,1 b2,2 b2,3
b3,0 b3,1 b3,2 b3,3

 →

b0,0 b0,1 b0,2 b0,3
b1,1 b1,2 b1,3 b1,0
b2,2 b2,3 b2,0 b2,1
b3,3 b3,0 b3,1 b3,2

=

c0,0 c0,1 c0,2 c0,3
c1,0 c1,1 c1,2 c1,3
c2,0 c2,1 c2,2 c2,3
c3,0 c3,1 c3,2 c3,3

 .

MixColumns Step

The MixColumns Step mixes up the information in each column of the
4 × 4 matrix output from the ShiftRows step. It does this mixing by ap-
plying what amounts to a Hill-cipher matrix-multiplication transformation
applied to each column, using the esoteric number system GF(28), which
was used to generate the S-box for the SubBytes step.

In the GF(28) number system, the bits in a byte, b7b6b5b4b3b2b1b0, are
interpreted to be the coefficients of the polynomial

b7x7 + b6x6 + b5x5 + b4x4 + b3x3 + b2x2 + b1x + b0,

where all the arithmetic used to evaluate this polynomial is modulo 2.
In other words, this is a Boolean polynomial where the addition used to
evaluate it is the same as the XOR operation and multiplication is the same
as the AND operation. But these polynomials are not used here for the
sake of evaluating them. Instead, in the GF(28) number system, we are
interested in operations performed on the underlying Boolean polynomials,
not on their evaluations. For example, to add two such polynomials, we
sum their respective matching coefficients, modulo 2:

(b7x7 + b6x6 + b5x5 + b4x4 + b3x3 + b2x2 + b1x + b0)
+ (c7x7 + c6x6 + c5x5 + c4x4 + c3x3 + c2x2 + c1x + c0)
= (b7 + c7)x7 + (b6 + c6)x6 + (b5 + c5)x5 + (b4 + c4)x4

+ (b3 + c3)x3 + (b2 + b2)x2 + (b1 + b1)x + (b0 + c0).

428 Chapter 8. Cryptography

In other words, to add two bytes, b and c, in the GF(28) number system, we
compute the exclusive-or b⊕ c.

The multiplication of two bytes, b and c, in the GF(28) number sys-
tem, amounts to a representation of the product of the two underlying
polynomials for b and c respectively. We can’t take this product without
modification, however, as it would, in general, be a degree-14 Boolean
polynomial, which would require more than 8 bits to represent. So we
define this product to be modulo the special polynomial

x8 + x4 + x3 + x + 1.

That is, to compute the product of two bytes, b and c, in GF(28), we com-
pute the Boolean polynomial for the product of the Boolean polynomials
for b and c, and then determine the remainder polynomial that results from
dividing the result by x8 + x4 + x3 + x + 1, using a polynomial analogue of
the long division algorithm we learned in grade school. As complicated as
this seems, there is a method for multiplying two bytes b and c in GF(28)
that is surprisingly simple to program and is almost as fast to compute as
regular integer multiplication. We omit the details of this multiplication
algorithm here, however.

Given this interpretation of arithmetic as being done as described above
in the number system GF(28), the MixColumns step of the AES encryption
algorithm is performed as follows:

00000010 00000011 00000001 00000001
00000001 00000010 00000011 00000001
00000001 00000001 00000010 00000011
00000011 00000001 00000001 00000010

 ·

c0,0 c0,1 c0,2 c0,3
c1,0 c1,1 c1,2 c1,3
c2,0 c2,1 c2,2 c2,3
c3,0 c3,1 c3,2 c3,3

=

d0,0 d0,1 d0,2 d0,3
d1,0 d1,1 d1,2 d1,3
d2,0 d2,1 d2,2 d2,3
d3,0 d3,1 d3,2 d3,3

 .

As in the Hill cipher, this operation is invertible in the GF(28) number
system. In fact, the inverse matrix to be used during the reverse Mix-
Columns step for decryption is as follows:

00001110 00001011 00001101 00001001
00001001 00001110 00001011 00001101
00001101 00001001 00001110 00001011
00001011 00001101 00001001 00001110

 .

8.5. Details of AES and RSA Cryptography 429

AddRoundKey Step

In the AddRoundKey step, we exclusive-or the result from previous steps
with a set of keys derived from the 128-bit secret key. The operation of the
AddRoundKey step, therefore, can be expressed as follows:

d0,0 d0,1 d0,2 d0,3
d1,0 d1,1 d1,2 d1,3
d2,0 d2,1 d2,2 d2,3
d3,0 d3,1 d3,2 d3,3

 ⊕

k0,0 k0,1 k0,2 k0,3
k1,0 k1,1 k1,2 k1,3
k2,0 k2,1 k2,2 k2,3
k3,0 k3,1 k3,2 k3,3

=

e0,0 e0,1 e0,2 e0,3
e1,0 e1,1 e1,2 e1,3
e2,0 e2,1 e2,2 e2,3
e3,0 e3,1 e3,2 e3,3

 .

Of course, the critical part of performing this step is determining how
the matrix of keys, ki,j, for this round, are derived from the single 128-bit
secret key, K.

AES Key Schedule

The key schedule for AES encryption is determined using a type of pseudo-
random number generator. The first 4× 4 key matrix, which is applied to
the plaintext directly before any of the steps in round 1, is simple. It is just
the secret key, K, divided into 16 bytes and arranged into a 4 × 4 matrix
in a column-major ordering. For the sake of numbering, let us call this the
round 0 key matrix, and let us refer to these columns as W[0], W[1], W[2],
and W[3], so that the round 0 key matrix can be viewed as[

W[0] W[1] W[2] W[3]
]

.

Given this starting point, we determine the columns, W[4i], W[4i + 1],
W[4i + 2], and W[4i + 3], for the round i key matrix from the columns,
W[4i− 4], W[4i− 3], W[4i− 2], and W[4i− 1], of the round i− 1 key matrix.

The first column we compute, W[4i], is special. It is computed as

W[4i] = W[4i− 4]⊕ Ti(W[4i− 1]),

where Ti is a special transformation that we will describe shortly. Given
this first column, the other three columns are computed as follows, and in
this order. (See Figure 8.15.)

W[4i + 1] = W[4i− 3]⊕W[4i]
W[4i + 2] = W[4i− 2]⊕W[4i + 1]
W[4i + 3] = W[4i− 1]⊕W[4i + 2].

430 Chapter 8. Cryptography

Figure 8.15: The key schedule for AES encryption.

Ti Transformation

The transformation, Ti(W[4i − 1]), which is performed as a part of the
computation of W[4i], involves a number of elements. Let w0, w1, w2, and
w3 denote the 4 bytes of W[4i − 1], in order. For each wj, j = 0, 1, 2, 3,
let S(wi) denote the substitution transformation determined by the S-box
used in the SubBytes step (see Figure 8.14) applied to wj. In addition, let
R(i) denote an 8-bit round constant, which is defined recursively, so that
R(1) = 00000001, and, for i ≥ 2,

R(i) = R(i− 1) · 00000010,

computed in the GF(28). That is, R(i) is an 8-bit representation of the
Boolean polynomial

xi−1 mod (x8 + x4 + x3 + x + 1).

The round constant R(i) is used in the computation of the key matrix for
Round i. In hexadecimal, the first ten round constants are 01, 02, 04, 08, 10,
20, 40, 80, 1b, and 36, which are all that is needed for AES encryption with
128-bit keys. Given all these elements, the transformation Ti(W[4i − 1]) is
defined as follows:

w0
w1
w2
w3

 →

S(w1)⊕ R(i)
S(w2)
S(w3)
S(w0)

 .

8.5. Details of AES and RSA Cryptography 431

That is, to compute Ti on W[4i− 1], we do a cyclical left shift of the bytes in
W[4i − 1], perform an S-box transformation of each shifted byte, and then
exclusive-or the first byte with the round constant, R(i). It is admittedly
somewhat complicated, but each of these elements are relatively fast to
perform in either software or hardware. Thus, since each step of the AES
encryption involves these fast operations, and the number of rounds in the
AES encryption algorithm is relatively small, the entire AES encryption
algorithm can be performed relatively quickly. And, just as importantly,
each step of the AES can be reversed, so as to allow for AES decryption.
Moreover, this amounts to a symmetric encryption scheme, since we use
the same key for both encryption and decryption.

8.5.2 Details for RSA

To understand the details of the RSA algorithm, we need to review some
relevant facts of number theory.

Fermat’s Little Theorem

We begin our number theory review with Fermat’s Little Theorem .

Theorem 8.1: Let p be a prime number and g be any positive integer less
than p. Then

gp−1 mod p = 1.

Proof: Because arithmetic in this case is done modulo p, this means that
we are working in the number system Zp. Moreover, since p is prime, every
nonzero number less than p has a multiplicative inverse in Zp. Therefore, if
ag mod p = bg mod p, for a, b ∈ Zp, then a = b. So the numbers 1g mod p,
2g mod p, 3g mod p, . . ., (p− 1)g mod p must all be distinct. That is, they
are the numbers 1 through p− 1 in some order. Thus,

(1g) · (2g) · (3g) · · · ((p− 1)g) mod p = 1 · 2 · 3 · · · (p− 1) mod p.

In other words,

(1 · 2 · · · (p− 1))gp−1 mod p = (1 · 2 · · · (p− 1)) mod p.

Therefore,
gp−1 mod p = 1.

432 Chapter 8. Cryptography

Euler’s Theorem

An important generalization to Fermat’s Little Theorem is based on a
function known as Euler’s Totient Function, φ(n). For any positive integer,
n, the function φ(n) is equal to the number of positive integers that are
relatively prime with n. Thus, for example, if p is prime, then φ(p) = p− 1,
and if n is the product of two primes, p and q, then φ(n) = (p− 1)(q− 1).
The generalization to Fermat’s Little Theorem is known as Euler’s Theorem,
which is as follows.

Theorem 8.2: Let x be any positive integer that is relatively prime to the
integer n > 0, then

xφ(n) mod n = 1.

Proof: The proof of Euler’s Theorem is similar to that of Fermat’s Little
Theorem. Let Z∗n denote the set of positive integers that are relatively prime
to n, so that the number of integers in Z∗n is φ(n). Also, note that each integer
in Z∗n has a multiplicative inverse in Z∗n. So multiplying each member of Z∗n
modulo n by x will give all the members of Z∗n back again in some order.
Thus, the product of all the xi values, modulo n, for i ∈ Z∗n is the same as
the product of the same i values. Therefore, cancelling out matching terms
implies this theorem.

As a corollary of this fact, we have the following:

Corollary 8.3: Let x be a positive integer relatively prime to n, and k be any
positive integer. Then

xk mod n = xk mod φ(n) mod n.

Proof: Write k = qφ(n) + r, so that r = k mod φ(n). Then

xk mod n = xqφ(n)+r mod n
= xqφ(n) · xr mod n
= (xqφ(n) mod n) · (·xr mod n)
= 1 · (xr mod n)
= xr mod n

xk mod φ(n) mod n.

8.5. Details of AES and RSA Cryptography 433

Euclid’s GCD Algorithm

One of the key algorithms for dealing with the types of large numbers that
are used in modern cryptography is one invented by the ancient Greek
mathematician Euclid. In fact, it is quite remarkable that the cryptographic
methods that allow for secure transactions on the Internet trace their roots
to a time before algebra even existed. Nevertheless, we will take advantage
of this more recent invention in describing how Euclid’s algorithm works
and how it can be used to facilitate arithmetic in Zn.

Euclid’s algorithm computes the greatest common divisor (GCD) of two
numbers, a and b. That is, Euclid’s algorithm computes the largest number,
d, that divides both a and b (evenly with no remainder). The algorithm
itself is remarkably simple, but before we can describe it in detail we need
to discuss some background facts. The first fact is as follows.

Theorem 8.4: The GCD d of two numbers, a > 0 and b ≥ 0, is the smallest
positive integer d such that

d = ia + jb,

for integers i and j.

Proof: Let e be the GCD of a and b. We show that d = e by first arguing
why d ≥ e and then showing that d ≤ e. Note first that, since e divides both
a and b evenly, it divides d as well. That is,

d/e = (ia + jb)/e = i(a/e) + j(b/e),

which must be an integer. Thus, d ≥ e.
Next, let f = ba/dc, and note that f satisfies the following:

a mod d = a− f d
= a− f (ia + jb)
= (1− f i)a + (− f j)b.

In other words, the number, a mod d, can be written as the sum of a
multiple of a and a multiple of b. But, by definition, a mod d must be strictly
less than d, which is the smallest positive integer that can be written as the
sum of a multiple of a and a multiple of b. Thus, the only possibility is
that a mod d = 0. That is, d is a divisor of a. Also, by a similar argument,
b mod d = 0, which implies that d is also a divisor of b. Therefore, d is a
common divisor of a and b; hence, d ≤ e, since e is the greatest common
divisor of a and b.

434 Chapter 8. Cryptography

Note that an immediate consequence of this theorem is that the GCD
of any number a and 0 is a itself. Given the theorem above and this little
observation, we are ready to present Euclid’s algorithm. We describe it
so that it takes two integers a and b, with a being the larger, and returns
a triple, (d, i, j), such that d is the GCD of a and b. The key idea behind
Euclid’s algorithm is that if d is the GCD of a and b, and b > 0, then d is also
the GCD of b and the value, a mod b; hence, we can repeat this process to
find the GCD of a and b. For example, consider the following illustration of
this process:

GCD(546, 198) = GCD(198, 546 mod 198) = GCD(198, 150)
= GCD(150, 198 mod 150) = GCD(150, 48)
= GCD(48, 150 mod 48) = GCD(48, 6)
= GCD(6, 48 mod 6) = GCD(6, 0)
= 6.

Thus, the greatest common divisor of 546 and 198 is 6.

The Extended Euclidean Algorithm

To compute the GCD of a and b, we first test if b is zero, in which case the
GCD of a and b is simply a; hence, we return the triple (a, 1, 0) as the result
of our algorithm. Otherwise, we recursively call the algorithm, getting the
triple, (d, k, l), resulting from a call to our algorithm with arguments b and
a mod b. Let us write a = qb + r, where r = a mod b. Thus,

d = kb + lr
= kb + l(a− qb)
= la + (k− lq)b.

Therefore, d is also the sum of a multiple of a and a multiple of b. So, in this
case, we return the triple (d, l, k − lq). This algorithm, which is known as
the extended Euclidean algorithm, is shown in Figure 8.16.

Algorithm GCD(a, b):
if b = 0 then {we assume a > b}

return (a, 1, 0)
Let q = ba/bc
Let (d, k, l) = GCD(b, a mod b)
return (d, l, k− lq)

Figure 8.16: The extended Euclidean algorithm.

8.5. Details of AES and RSA Cryptography 435

Let us argue why this algorithm is correct. Certainly, if b = 0, then
a is the GCD of a and b; hence, the triple returned by extended Euclid’s
algorithm is correct. Suppose, for the sake of an inductive argument, that
the recursive call, GCD(a, a mod b), returns the correct value, d, as the GCD
of a and a mod b. Let e denote the GCD of a and b. We have already argued
how d can be written as the sum of a multiple of a and a multiple of b. So
if we can show that d = e, then we know that the triple returned by the
algorithm is correct. First, let us write a = qb + r, where r = a mod b, and
note that

(a− qb)/e = (a/e)− q(b/e),

which must be an integer. Thus, e is a common divisor of a and r = a− qb =
a mod b. Therefore, e ≤ d. Next, note that, by definition, d divides b and
a− qb. That is, the following is an integer:

(a− qb)/d = (a/d)− q(b/d).

Moreover, since b/d must be an integer, this implies that a/d is an integer.
Thus, d is a divisor of both a and b. Therefore, d ≤ e. That is, d is the greatest
common divisor of a and b.

Modular Multiplicative Inverses

As it turns out, computing the GCD of pairs of integers is not the main use
of the extended Euclidean algorithm. Instead, its main use is for computing
modular multiplicative inverses.

Suppose we have a number, x < n, and we are interested in computing
a number, y, such that

yx mod n = 1,

provided such a number exists. In this case, we say that y is the multiplica-
tive inverse of x in Zn, and we write y = x−1 to indicate this relationship.
To compute the value of y, we call the extended Euclidean algorithm to
compute the GCD of x and n. The best case is when x and n are relatively
prime, that is, their greatest common divisor is 1. For when x and n
are relatively prime, then the multiplicative inverse of x in Zn exists. In
this case, calling the extended Euclidean algorithm to compute GCD(n, x)
returns the triple (1, i, j), such that

1 = ix + jn.

Thus,
(ix + jn) mod n = ix mod n = 1.

Therefore, i is the multiplicative inverse, x−1, in Zn, in this case. Moreover,
if our call to the extended Euclidean algorithm to compute GCD(n, x)

436 Chapter 8. Cryptography

returns a greatest common divisor greater than 1, then we know that the
multiplicative inverse of x does not exist in Zn.

The Efficiency of the Extended Euclidian Algorithm

The other nice thing about the extended Euclidean algorithm is that it is
relatively fast. It is easy to show that every two consecutive recursive calls
made during the extended Euclidean algorithm will halve the magnitude of
the first argument (recall, for instance, the example we gave of the process
that forms the basis of Euclid’s algorithm). Thus, the running time of the
extended Euclidean algorithm is proportional to

dlog ae,

which is equal to the number of bits needed to represent a. Therefore, the
extended Euclidean algorithm runs in linear time with respect to the size
of its input; hence, computing multiplicative inverses in Zn can be done in
linear time.

Modular Exponentiation

Another important computational tool used in modern cryptography is
modular exponentiation. In this instance, we are given three positive
integers, g, n, and p, which are represented in binary, and we want to
compute

gn mod p.

Of course, one way to calculate this value is to initialize a running
product, q, to 1, and iteratively multiply q with g, modulo p, for n iterations.
Such a straightforward algorithm would clearly use n modular multiplica-
tions. Unfortunately, if n is relatively large, then this is an expensive way to
do modular exponentiation. Indeed, since the number n is represented in
binary using

dlog ne

bits, this straightforward way of performing modular exponentiation re-
quires a number of multiplications that are exponential in the input size.
This algorithm is therefore way too slow for practical use in cryptographic
computations.

8.5. Details of AES and RSA Cryptography 437

Repeated Squaring

Fortunately, there is a better algorithm that runs much faster. The main
purpose of this algorithm is to compute gn using repeated squaring. That
is, using multiplications modulo p, we compute g, g2 = g · g, g4 = g2 · g2,
g8 = g4 · g4, and so on. This approach allows us to iteratively build up
powers of g with exponents that are powers of 2. Then, given the binary
representation of a number, n, we can compute gn from these powers of g
based on this binary representation. For example, we could compute g25 as

g25 = g16+8+1 = g16 · g8 · g1,

since 25 = 11, 000 in binary. Or we could compute g46 as

= g32+8+4+2 = g32 · g8 · g4 · g2,

since 46 = 101, 000 in binary. We give a pseudo-code description of the
repeated squaring algorithm in Figure 8.17.

Algorithm ModularExponentiation(g, n, p):
q = 1 {The running product}
m = n {A copy of n that is destroyed during the algorithm}
s = g {The current square}
while m ≥ 1 do

if m is odd then
q = q · s mod p

s = s · s mod p {Compute the next square}
m = bm/2c {This can be done by a right shift}

Figure 8.17: The repeated squaring algorithm for computing gn mod p.

Note that this algorithm uses a number of multiplications that are
proportional to the number of bits used to represent n. Thus, this algorithm
uses a linear number of multiplications, which is clearly much better than
an exponential number. The take-away message, therefore, is that modular
exponentiation is a tool that can be used effectively in modern cryptogra-
phy. It is not as fast as a single multiplication or even symmetric encryption
methods though, so we should try not to overuse modular exponentiation
when other faster methods are available.

438 Chapter 8. Cryptography

Primality Testing

Yet another important computation that is often used in modern cryptogra-
phy is primality testing. In this instance, we are given a positive integer, n,
and we want to determine if n is prime or not. That is, we want to determine
if the only factors of n are 1 and n itself. Fortunately, there are efficient
methods for performing such tests. Even so, the details of these methods
are fairly complicated; hence, they are beyond the scope of this book.

One thing we mention, however, is that none of these methods actually
factor n. They just indicate whether n is prime or not. Moreover, the
fact that no primality testing algorithm actually factors n has given rise
to a general belief in cryptographic circles that the problem of factoring
a large number, n, is computationally difficult. Indeed, there are several
cryptographic methods, including the RSA cryptosystem we discuss in the
next section, whose security is based on the difficulty of factoring large
numbers.

Given an efficient way of performing primality testing, actually gener-
ating a random prime number is relatively easy. This simplicity is due to an
important fact about numbers, which is that the number of prime numbers
between 1 and any number n is at least n/ ln n, for n ≥ 4, which is a
property derived from the Prime Number Theorem, whose exact statement
and proof are beyond the scope of this book. In any case, simply knowing
that the number of primes between 1 and n is at least n/ ln n is sufficient
for cryptographic purposes, because it means that if we generate a random
odd number q between n/2 and n, then q will be prime with probability at
least 1/ ln n. Thus, if we repeat this process a logarithmic number of times,
testing each number generated for primality, then one of our generated
numbers is expected be prime.

How RSA is Typically Used

Even with an efficient implementation, the RSA cryptosystem is orders-of-
magnitude slower than the AES symmetric cryptosystem (Section 8.1.6).
Thus, a standard approach to encryption is as follows:

1. Encrypt a secret key, K, with the RSA cryptosystem for the AES
symmetric cryptosystem.

2. Encrypt with AES using key K.
3. Transmit the RSA-encrypted key together with the AES-encrypted

document.
The above method illustrates a common use of public-key cryptography in
conjunction with a symmetric cryptosystem.

8.6. Exercises 439

8.6 Exercises

For help with exercises, please visit securitybook.net.

Reinforcement

R-8.1 Eve has tricked Alice into decrypting a bunch of ciphertexts that
Alice encrypted last month but forgot about. What type of attack is
Eve employing?

R-8.2 Eve has an antenna that can pick up Alice’s encrypted cell phone
conversations. What type of attack is Eve employing?

R-8.3 Eve has given a bunch of messages to Alice for her to sign using
the RSA signature scheme, which Alice does without looking at the
messages and without using a one-way hash function. In fact, these
messages are ciphertexts that Eve constructed to help her figure out
Alice’s RSA private key. What kind of attack is Eve using here?

R-8.4 Eve has bet Bob that she can figure out the AES secret key he shares
with Alice if he will simply encrypt 20 messages for Eve using that
key. For some unknown reason, Bob agrees. Eve gives him 20
messages, which he then encrypts and emails back to Eve. What
kind of attack is Eve using here?

R-8.5 What is the encryption of the following string using the Caesar
cipher: THELAZYFOX.

R-8.6 What are the substitutions for the (decimal) numbers 12, 7, and 2
using the S-box from Figure 8.3?

R-8.7 What are the next three numbers in the pseudo-random number
generator 3xi + 2 mod 11, starting from 5?

R-8.8 What is the Hill cipher that corresponds to the permutation cipher

π : (1, 2, 3, 4, 5, 6, 7, 8)→ (2, 6, 8, 1, 3, 7, 5, 4)?

R-8.9 In the inverse of the S-box from Figure 8.14, what is the substitution
for e3, in hexadecimal?

R-8.10 What would be the transformation done by three consecutive ap-
plications of the ShiftRows step in the AES encryption algorithm?

R-8.11 How many keys can be used with each of the three key lengths for
the AES cryptosystem.

440 Chapter 8. Cryptography

R-8.12 Bob is arguing that if you use Electronic Codebook (ECB) mode
twice in a row to encrypt a long message, M, using the same key
each time, that it will be more secure. Explain why Bob is wrong in
the case of using a binary one-time pad encryption scheme.

R-8.13 Show the steps and intermediate results of applying the extended
Euclidean algorithm to compute the GCD of 412 and 200.

R-8.14 Compute the multiplicative inverse of 5 in Z21.
R-8.15 What is 716 mod 11?
R-8.16 Roughly how many times would you have to call a primality tester

to find a prime number between 1,000,000 and 2,000,000?
R-8.17 What is 7120 mod 143?
R-8.18 Show the result of encrypting M = 4 using the public key (e, n) =

(3, 77) in the RSA cryptosystem.
R-8.19 Why can’t Bob use the pair (1, n) as an RSA public key, even if

n = pq, for two large primes, p and q?
R-8.20 Alice is telling Bob that he should use a pair of the form (3, n)

or (16385, n) as his RSA public key, where, as usual, n = pq, for
two large primes, p and q, if he wants people to encrypt messages
for him from their cell phones. What is the justification for Alice’s
advice?

R-8.21 Show the result of an Elgamal encryption of the message M = 8
using k = 4 for the public key (p, g, y) = (59, 2, 25).

R-8.22 Demonstrate that the hash function

H(x) = 5x + 11 mod 19

is not weakly collision resistant, for H(4), by showing how easy it
is to find such a collision.

R-8.23 Demonstrate that the hash function

H(x) = 5x + 11 mod 23

is not strongly collision resistant, by showing how easy it is to find
such a collision.

R-8.24 Explain why nonforgeability and nonmutability imply nonrepudi-
ation for digital signatures.

R-8.25 Explain the strengths and weaknesses of using symmetric encryp-
tion, like AES, versus a public-key cryptosystem, like RSA.

R-8.26 Name two things that the RSA and ElGamal cryptosystems have
in common, other than the fact that they are both public-key cryp-
tosystems?

8.6. Exercises 441

Creativity

C-8.1 What is the plaintext for the following ciphertext, which was en-
crypted using a simple substitution cipher:
CJBT COZ NPON ZJV FTTK TWRTUYTFGT NJ DTN O XJL. Y
COZ ZJV CPJVIK DTN O XJL MYUCN.

C-8.2 ROT13 is a cyclic shift cipher that substitutes each English letter
with one that is 13 away in the alphabet. It is used today not for
security, but as a simple obfuscation device, because the same algo-
rithm is used for both encryption and decryption. People wishing
to encrypt or decrypt a message, M (such as a spoiler paragraph
in a movie review), just cut-and-paste M to a ROT13 converter and
click a button “APPLY” to do the encryption or decryption. Give
an example of another ROTi transformation that could be used for
both encryption and decryption in a similar way.

C-8.3 In a special case of a permutation cipher, we take a message,
M, and write its letters in an s × t table, in a row-major fashion,
and then let the ciphertext be a column-major listing of the
the entries in the table. For example, to encrypt the message
ATTACKATDAWN, using a 3× 4 table, we would write the message as
ATTA
CKAT
DAWN
and then write down the ciphertext as ACDTKATAWATN. The
secret key in this cryptosystem is the pair (s, t). How is decryption
done in this cryptosystem? Also, how hard would it be to attack
this cryptosystem using a ciphertext-only attack?

C-8.4 How many valid English plaintexts are there for the ciphertext
message CJU using a length-3, one-time pad of cyclic shifts,
(i, j, k)?

C-8.5 Alice is using a linear congruential generator, axi + b mod 13, to
generate pseudo-random numbers. Eve sees three numbers in a
row, 7, 6, 4, that are generated from Alice’s function. What are the
values of a and b?

C-8.6 Bob is arguing that if you use output feedback (OFB) mode twice in
a row to encrypt a long message, M, using the same key each time,
it will be more secure. Explain why Bob is wrong, no matter what
encryption algorithm he is using for block encryption.

C-8.7 Why can’t Bob use the pair (6, n) as an RSA public key, where n =
pq, for two large primes, p and q?

442 Chapter 8. Cryptography

C-8.8 Use Euler’s Theorem, not repeated squaring, to compute

2010203 mod 10403.

Show your work.
C-8.9 Suppose we use the AES algorithm with a fixed key, K, to imple-

ment a cryptographic hash function. That is, we define

H(M) = AESK(M).

Argue why this algorithm is likely to be weakly collision resistant.
C-8.10 Alice wants to send Bob a message, M, that is the price she is

willing to pay for his used car (M is just an integer in binary). She
uses the RSA algorithm to encrypt M into the ciphertext, C, using
Bob’s public key, so only he can decrypt it. But Eve has intercepted
C and she also knows Bob’s public key. Explain how Eve can alter
the ciphertext C to change it into C0 so that if she sends C0 to Bob
(with Eve pretending to be Alice), then, after Bob has decrypted C0,
he will get a plaintext message that is twice the value of M.

C-8.11 An Internet game show has asked if Alice is willing to commit
today to whether she will marry Bob, who is either an ex-con with a
dragon tattoo on his face or a former male model who just won the
tristate lottery. Next week, the real identity of Bob will be revealed,
at which time Alice must also reveal her answer (which she has
already committed to). Explain a secure and confidential way that
Alice can commit to her answer now that prevents her from forging
her response next week when she learns who Bob really is.

C-8.12 Suppose the primes p and q used in the RSA algorithm to define
n = pq are in the range [

√
n− 100,

√
n + 100]. Explain how you can

efficiently factor n using this information. Also, explain how this
knowledge breaks the security of the RSA encryption algorithm.

C-8.13 Bob is stationed as a spy in Cyberia for a week and wants to
prove that he is alive every day of this week and has not been
captured. He has chosen a secret random number, x, which he
memorized and told to no one. But he did tell his boss the value
y = H(H(H(H(H(H(H(x))))))), where H is a one-way crypto-
graphic hash function. Unfortunately, he knows that the Cyberian
Intelligence Agency (CIA) was able to listen in on that message;
hence, they also know the value of y. Explain how he can send a
single message every day that proves he is still alive and has not
been captured. Your solution should not allow anyone to replay
any previous message from Bob as a (false) proof he is still alive.

8.6. Exercises 443

C-8.14 Bob has modulus n and exponent e as his RSA public key, (e, n).
He has told Eve that she can send him any message M < n and
he is willing to sign it using a simple RSA signature method to
compute S = Md mod n, where d is his private RSA exponent, and
he will return the signature S to Eve. Unfortunately for Bob, Eve
has captured a ciphertext C that Alice encrypted for Bob from her
plaintext P using his RSA public key. (Bob never actually got C.)
Eve wants to trick Bob into decrypting C for her and she doesn’t
want Bob to see the original plaintext P that goes with C. So Eve
asks Bob to sign the message M = reC mod n using his private
RSA exponent, and send her back the signature S for M, where
r is a random number that Eve chose to be relatively prime to n.
Explain how Eve can use Bob’s signature, S, on M, to discover the
plaintext, P, for C.

C-8.15 Let p be a prime. Give an efficient alternative algorithm for com-
puting the multiplicative inverse of an element of Zp that is not
based on the extended Euclidean algorithm. (Hint: Use Fermat’s
Little Theorem.)

Projects

P-8.1 Write a program that can implement arbitrary substitution ciphers.
The substitution should be specified by a conversion table for
letters, which should be the same for both uppercase and lowercase
letters.

P-8.2 Write a program that can perform AES encryption and decryption.

P-8.3 Write a program that can implement RSA setup, encryption, and
decryption.

P-8.4 Write a program that can implement ElGamal setup, encryption,
and decryption.

P-8.5 Write a program that can implement ElGamal digital signatures.

444 Chapter 8. Cryptography

Chapter Notes

A more detailed coverage of cryptography can be found in the books by Ferguson,
Schneier and Konho [30], Menezes et al. [58], Stinson [97], and Trappe and Wash-
ington [103]. Simon Singh gives a historical perspective on cryptography [95] in his
best-selling title “The Code Book”. The Hill cipher was published in 1929 by Lester
Hill [39]. The first known description of the one-time pad algorithm was given in
a patent issued in 1919 to Gilbert Vernam [106]. This cryptosystem was proven
secure in 1949 by Claude Shannon [92]. Declassified details about the Venona
Project can be found at a web site [66] of the U.S. National Security Agency (NSA).
Additional details about AES, the Advanced Encryption Standard, are contained
in a book by its designers, Daemen and Rijmen [22]. The concept of public-
key cryptography is credited (in unclassified circles) to Diffie and Hellman [26].
The RSA public-key cryptosystem and digital signature scheme were discovered
by Rivest, Shamir, and Adleman [82]. The Elgamal cryptosystem and signature
scheme are due to Taher Elgamal [28]. Additional details about cryptographic
hash functions can be found in a survey by Preneel [77]. The Merkle-Damgård
construction is described in [23]. Chosen-prefix collisions attacks on the MD5 hash
function wre found by Stevens, Lenstra and de Weger [53].

